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Abstract

A model is constructed of a nonlinear, one-dimensional inhomogeneous multi -

component plasma slab which has the characteristics of the plasma sheath surround-

ing a typical hypersonic re-entry vehicle at 200, 000 ft while traveling at about 18, 000

ft/second. A plane wave incident upon the slab at arbitrary angle can induce changes in

electron temperature without affecting the neutral gas temperature. The variations

of electron temperature produce changes in collision frequency and the rate coeffi-

dents describing the various electron production and loss mechanisms. Such changes

cause alteratiors in the effective dielectric constant of the medium. On the basis of

a model of a plane-layered medium composed of a stack of linear homogeneous sheets,

the reflection and transmission coefficients of the nonlinear slab may be computed

by a step-by-step numerical integration of Maxwell's equations expressed in the form

of difference equations.

Acknowledgments

The author is sincerely grateful to Mr. Walter Rotman for his suggestion of the

problem and for his many helpful discussions.

• liii



Contents

Page

1 INTRODUCTION 1
2 THE CONDUCTIVITY OF A PARTIALLY IONIZED PLASMA IN THE

PRESENCE OF A STRONG ELECTROMAGNETIC FIELD 8
2. 1 The Boltzmann Equation for a Partially Ionized Gas 13

2. 1. 1 Collision Integral for Elastic Collisions Between Electrons and
Neutrals or Ions 16

2. 1. 2 Collision Integral for Inelastic Collisions Between Electrons
and Neutrals 19

2. 1. 3 Collision Integral for Elastic Scattering Between Electrons
and Positive Ions 21

2. 1. 4 Collision Integral for Electron-Electron Collisions 24

2. 1. 5 Collision Integrals for Ionizing and Recombination Collisions 27
2.2 Solutions of the Zero Order and First Spherical Harmonic Components

of the Boltzmann Equation 34

2.3 Particle Conservation and Energy Conservation; the Zero and
Second Velocity Moments of the Boltzmann Equation 39

2.3.1 The Steady-State Electron Concentration 39

2.3.2 The Energy Balance Equation 45

2.4 Heat Transport Through the Electron Gas Due to Conduction and
Particle Diffusion 55

2. 5 Diffusion Effects 60

3 KINETICS OF HIGH TEMPERATURE AIR IN THE PRESENCE OF
AN EM FIELD 60

3. 1 Neutral-Neutral Impact 63
3.2 Photoionization 66

3.3 Ionization by Electron Impact 67

v



Contents (Contd)

Page

3.4 Effects of Charge Exchange 68

3.5 Effects of Electron Attachment 71

4 THE FIELD DISTRIBUTION AND THE REFLECTION AND
TRANSMISSION COEFFICIENTS OF AN INHOMOGENEOUS,
NONLINEAR PLASMA SLAB 72

4. 1 The Field Equations (MKS) 74

4.2 Wave Propagation in Nonlinear Inhomogeneous Media 75

4.2. 1 A Linear, Homogeneous Semi-Infinite Plasma 75

4.2.2 Exact Solutions of the Wave Equation for a One-Dimensional
Inhomogeneous Linear Plasma Medium 77

4.2.3 Approximate Methods for Obtaining Solutions to the Wave
Equation for a One-Dimensional Inhomogeneous Linear Plasma
Medium 79

4.2.4 Technique for Computing the Field Distribution, Transmission
and Reflection Coefficients of a Nonlinear One-Dimensional
Inhomogeneous Plasma Slab 83

5 CONCLUSIONS 88

References 97

vi



r

Nonlinear Transmission Characteristics

of the Plasma Sheath

1. DINT•DUCT ION

A h'ypersonic re-entry vehicle is enveloped by a shock-induced sheath of ionized

gas. This re-entry plasma sheath can greatly influence electromagnetic communica-

tions frequencies in the radio and microwave range. Many calculations have been

made on the reflection and transmission properties of the plasma sheath surround-

ing a hypersonic re-entry vehicle. Perhaps the most straightforward analysis,

which can yield useful information on signal degradation, is based upon the model

consisting of a plane wave incident on a dielectric slab. The electromagnetic prop-

erties of the re-entry plasma sheath are characterized by an equivalent dielectric

slab whose complex dielectric constant and thickness simulate the actual plasma

sheath. However this type of analysis is not capable of predicting the dominant

characteristics of the radiation patterns of plasma-coated slot antennas located on

a re-entry vehicle surface.

If commu.nications between the vehicle and ground are effected by means of slots

or horns flush-mounted on the missile surface, a suitable model describing the an-

tenna system consists of a slot-excited plasma slab cqvering a ground plane. The

prominent features of the radiation patterns of such a structure may be obtained by

evaluating the integral representations for the field components by the method of

steepest descent. Tamir and Olinera have demonstrated that the near field of a

slot-excited plasma slab is represented mainly by contributions from complex waves.

(Received for publication, 28 February 1963)
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For frequencies below the plasma frequency, the complex waves are of the spectral

type which do not transport energy but represent stored energy. At frequencies

above the plasma frequency, the complex waves are of the leaky-wave type and may

be strongly excited for certain slab thicknesses. The shape of the far-field radiation

pattern may be obtained by integrating the near field over a Kirchoff-Huygens sur-

face. The near-field components are found by evaluating the integral representa-

tions of the field by the calculus of residues. For frequencies greater than the

plasma frequency, the radiation pattern of a slot-excited grounded plasma slab exhibits

peaks at the critical angle. Shore and Meltz 2 have investigated the far-field compo-

nents using Fourier analysis and the stationary phase procedure for the case of a

slot in a ground plane covered by an anisotropic lossy plasma lAyer.

These methods of analysis usually assume a uniform plasma layer, although
inhomogenieties in one dimension may be taken into account by using a plane-layered

model. Felsen and Marcuvitz 3 have pointed out that an electromagnetic field prob-

lem with prescribed sources may be reduced by suitable modal procedures to a net-

work problem. The equivalent network problem may then be solved for a typical

mode and the field solution is then obtained by modal synthesis. The problem of the

modal analysis of a plane-layered medium may be transformed into an equivalent

network problem of a transmission line consisting of uniform sections, where the

voltage and current at the discontinuities in the line have the same boundary condi-

tions as the E and H fields have at the discontinuities in the plane-layered medium.

All of these approaches to the problem of electromagnetic transmission through

the re-entry plasma sheath do not consider the effect of perturbations induced in the

plasma medium by the presence of an electromagnetic wave. If the electromagnetic

propagation characteristics of the plasma medium are described by a complex die-
lectric constant K, then this parameter may be related to the electron density Ne

and electron-neutral collision frequency P:

K Kr + JKi

(W /W) 2 ('/W)(Wl /lW))2
I 1 - j I PW _ *(1)

1 + (,Ilw)2 1 + (vlwo)

For relatively high field strengths, it is expected that the degree of ionization and

the electron-neutral particle collision frequency will change, thereby altering the

electromagnetic transmission characteristics of the plasma medium. However,

any model for describing such a nonlinear interaction between high-power electro-

magnetic radiation and the plasma medium will have to include a detailed picture of

the interaction of the local fields inside the medium with the plasma constituents.
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A detailed picture of the various microscopic processes, such as the local field-

particle interactions and the particle-particle interactions, give rise to a medium that
may be characterized on a macroscopic level by a complex dielectric constant that

is dependent upon the local field distribution in the plasma medium. This type of

medium does not lend itself to modal analysis, since the representation of an arbi-

trary field in the medium by a Fourier integral over the wave numbers depends upon
the validity of the principle of superposition. Each mode is assumed to propagate

with a phase velocity that depends upon the dielectric constant of the medium, and

the dielectric constant is assumed to be independent of the presence of other modes.

This condition is no longer satisfied in a medium whose dielectric constant depends

upon the local field distribution in the medium. For this reason a nonlinear model

was constructed consisting of a plane wave of arbitrary angle of polarization inci-

dent at an arbitrary angle upon a plane-layered plasma slab. The slab consists of

all the constituents normally found behind a high-temperature shock (50000K). The

thermodynamic and gas kinetic parameters were selected to coincide with conditions

found behind a shock of a representative blunt-nosed vehicle traveling at 18, 000 ft/

sec at an altitude of 200, 000 feet.

The total reflection and transmission coefficients of a plane-layered plasma

slab having the same characteristics as the sheath surrounding a typical re-entry

vehicle may be computed for an incident plane wave consisting of a single frequency

component. The nonlinear response of the plasma medium to the perturbing electro-

magnetic wave is found for the steady-state case, corresponding to an incident plane

wave whose frequency is much greater than the frequency for energy transfer be-

tween the electron gas and the neutral-particle gas. The condition for a steady-

state nonlinear response of a plasma to a perturbing electromagnetic wave may be

written

w >>Gy ,

where w a frequency of impressed field
G a relative fractional energy loss of an electron in colliding

with a neutral particle (G a 2m/M for electron elastic
collisions with neutrals of mass M)

P • electron-neutral particle collision frequency.

Since rEN - 1/Gy is the energy relaxation time for the electron gas, this condition

may be written:

'EN >T

where T a 2u/w is the period of the impressed field. Because the energy relaxation
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time for the electron gas is much greater than the period of the impressed electro-

magnetic field, the electron temperature will settle down to some average value

dependent upon the mean square value of the electromagnetic field. In the steady

state the electromagnetic propagation characteristics of a plasma perturbed by a

relatively high-power electromagnetic field may be determined by specifying the

complex dielectric constant, which is a function of the following parameters:

(1) An effective electron collision frequency

V EFF V (4)/ Vlv) v 4 exp( dv

EF ' (Te) + jj Te max' (2
e maxe (2)

where

V (Te - 4wf v(v) fmax v2dv

"max~ r e %)~ v maxxpmy

4. m •/2 2 • mv 2()dv.

v(v) is the electron collision frequency as a function of electron velocity and

Te is the electron temperature.

(2) The interelectron collision frequency

N InA
"Pee a 1/2 372 (3

11.4 A1 T

where U nA) is given as a function of N and Te by Spitzer.5 A = 1/1823 for
electrons.

(3) The electron density Ne.
(4) The isotropic part of the electron velocity distribution function f (which is

very nearly Maxwellian even in the presence of a strong electromagnetic field if

the interelectron collision frequency is much greater than the collision frequency

for energy transfer between the electron gas and the neutral-particle gas V >>Gv).

It turns out that the condition tee >> GP is satisfied for the partially-ionized

(0. 01 to 0. 1%) plasma behind strong shocks in air over a considerable range of
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pressures and temperatures. Peskoff6 has tabulated the electron density, 'the inter-

electron collision frequency, and the electron-neutral collision frequency for the

stagnation region behind a normal shock with a free-stream velocity of 18, 000 ft/sec
at altitudes of 40, 60, 80, and 100 km. Peskoff's tabulations indicate that the inter-
electron collision frequency (oee) is of the order of the electron-neutral collision

frequency (YeN); i.e., 'ee , heN. Since the fractional energy lose of an electron

per collision (G) with the atoms and molecules found behind a high-temperature
shock in air ranges between 10.3 to 10-2 for electron energies of 0. 5 to 2 ev (cor-

responding to electron temperatures of 5000" to 20, 0001K). the condition ee>>G VeN

is always satisfied behind a shock with gas temperatures at 50006K and electron
temperatures of 50000 to 20, 000"K (see Massey and Burhop, 7p. 279). It will be

demonstrated in the next section (see Ginzburg and Gurevich, p. 132) that when the
condition Yee >> GP is satisfied, the isotropic part of the electron velocity distribu-

tion function in a partially-ionized plasma is Maxwellian, even in the presence of a

strong electromagnetic field. This fact permits the establishment of the electron
temperature as a proper thermodynamic variable. If the additional assumption is
made that the gas temperature is not changed by the perturbing electromagnetic

field (a good approximation), then the steady-state electron density may be found

as a function of the various parameters that determine the rate at which electrons
appear or recombine. The rate coefficients for electron production or loss, such

as the rate of ionization for electron impact on neutrals, dissociative recombination,

and three-body recombination are known as an explicit function of electron tempera-
ture for the various constituents of high-temperature air.

Since the predominant electron production and electron loss mechanisms are

believed to be known for a high-temperature shock in air, even when the electron
temperature is greater than the neutral and heavy ion temperature, the computation

of the change in the electron density of the plasma sheath produced by changes in

the electron temperature will require specific knowledge of the electron temperature

distribution in the slab of plasma. In the steady state the electron temperature at

each point in the plasma slab depends upon the rate at which the electromagnetic

field heats the electron gas and the rate at which the electron gas l6ses energy. The

various electron energy loss mechanisms include:
(1) Elastic electron-neutral and electron-ion collisions.

(2) lonizing collisions by electron impact.

(3) Collisions between electrons and molecules that involve the excitation of
vibrational or rotational states.

(4) Recombination collisions (dissociative and three body).
(5) Heat transport due to gradients of the diffarun between the electron

temperature and the neutral gas temperatpre. There are tim heat transport
coefficients (see Anderson and Goldstein,Y p. 77). One transport coefficient
depends upon heat conduction due to electron-neutral collisions and the other
depen% upon heat conduction due to electron-electron collisions f0pitser andHarmn )
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(6) Heat loss through electron diffusion which involves a term in the energy
balance equation of the form 64k 2 Te

9WmPEFF Vle Ve.

On the buis of equilibrium-flow calculations performed by Rotman and Meltz 1

for the electron density and temperature profile behind a high-temperature shock in

air, it may be shown that the various heat loss mechanisms of the electron gas due

to conduction or diffusion are negligible in comparison with losses due to elastic and

inelastic electron-neutral and electron-ion collisions. The model assumed consists

of a plane wave incident on a plasma slab, and owing to the infinite extent of the plane

wave front, heat losses due to electrons flowing out of the region heated by the

electromagnetic field will not be considered. These preliminary facts permit compu-

tation of the total reflection and transmission coefficient of the plasma sheath for

relatively high-power densities (about 1)0 watts/cm 2) as a function of the amplitude

of the incident plane wave, angle of incidence, and angle of polarization.

One of the first investigations of the nonlinear interaction of electromagnetic

radiation with the plasma sheath surrounding hypersonic re-entry vehicles was con-

ducted by Sisco and Fiskin. 15 In this study, the assumption was made that only the

collision frequency of the hypersonically-produced plasma would change under

perturbation by an electromagnetic wave as long as the field strengths involved were

below the breakdown threshold. However the condition for breakdown may not be

sharply defined in the case where ionization exists prior to the application of high-

power electromagnetic radiation. It is possible that the electron density may change

by a factor of two or three in a plasma layer surrounding an aperture antenna because

of changes in the power level. Such alterations in the electron density will have as

pronounced an effect on the microwave conductivity of the plasma as changes induced

in the electron collision frequency. At power levels at X-band (10 kMc) of the order

of 100 watts/cm2 , it is estimated that the electron temperature will change by about

a factor of four (from 50000 to 20. 000K). This will produce about factor of two

changes in electron density and collision frequency. If the frequency of a plane wave

incident upon a plasma slab is about equal to the average plasma frequency in the

slab (w ,w w p), then there will be little reflection from the first air-plasma interface

and a maximum of energy coupling between the electromagnetic wave and the lossy

plasma. Alterations in the electron density and collision frequency of the order of

a factor of two are capable of inducing 50 to 100 percent changes in reflection coef-

ficient and absorption coefficient.

The method of computing the reflection and transmission coefficients of the non-

linear slab of plasma proceeds on the basis of a step-by-step numerical integration

of Maxwell's equations. The approximation consists in replacing the inhomogeneous

nonlinear plasma slab with a set of homogeneous linear slabs. If Maxwell's equations

are written in the form of difference equations, and the step-by-step numerical
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integration is accomplished by using backward differences starting on the face of the

slab from which the transmitted wave emerges, then the solution for the field dis-

tribution in the nonlinear, nonhomogeneous slab may be determined by assuming a

value for the amplitude of the transmitted wave. In this scheme the fields are

completely determined at the point Z-h, once the fields are known at the point Z

and the dielectric constant is known at the point Z. 'h1 is the increment chosen in

obtaining solutions of the difference equations and corresponds to a layer over which

the dielectric constant is assumed not to vary. The dielectric constant at the point

Z in the plasma slab is found by calculating the effective collision frequency and

the electron density at this point in the plasma. These parameters are determined

once the electron temperature is known. The electron temperature is determined

from an energy balance equation for the layer lying between the points Z and Z-h.

The energy balance equation is simply a statement of the fact that, in the steady

state, the rate at which the electromagnetic field supplies energy to the electron gas

is equal to the rate at which the electron gas loses energy to the neutral and ion gas

through elastic and inelastic collisions.

The step-by-step numerical integration of the electromagnetic field equations

has been discussed by Penico, 1 2 Stickler, 1 3 and Richmond 14 for the case of a plane

wave incident upon a dielectric slab with the dielectric constant a function of posi-

tion in the direction perpendicular to the interfaces. Most of these analyses start

with the wave equation for the field components. However an advantage is gained

by starting from Maxwell's equations directly, particularly in the nonlinear problem.

Specifically, Richmond 14 utilizes the wave equation for the field components E and

H. In his analysis the solution of the difference equation is started by assuming a

value for the amplitude of the transmitted field. Since the wave equation is of the

second order, the field must be known at a second point to uniquely specify the

solution. The field at the position of the first backward difference is usually ex-

panded in a Taylor series with the size of the increment (h) as parameter. Deter-

mination of the field at the position of the first backward difference by a Taylor ex-

pansion is not necessary if Maxwell's equations (first-order equations) are used

directly. It should be noted that the step-by-step numerical integration of the elec-

tromagnetic field equations by backward differences it a method that may be applied

to the nonlinear plasma slab problem only when thermal and particle diffusion from

layer to layer can be neglected. The effects of the boundaries are neglected insofar

as it it assumed that the temperature and electron density gradients in the boundary

layer and at the edge of the shock arc so steep compared to a wavelength that the

boundaries may be represented as plane interfaces.
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4. TEE CONDICTWITY OF A PARTIALLY ON1EW PLASMA IN THE
PRESNCE OF A STRONG ELECTROMAGNETIC FIELD

If an electromagnetic field is impressed upon a partially-ionized gas, the elec-

trons will gain energy from the electromagnetic field by suffering collisions with the

neutral species and heavy ions in such a manner that their ordered oscillatory motion

is changed to random thermal motion. For a partially-ionized plasma, such as
high temperature air (50004K), the electrons lose only a small relative fraction of

their energy (0) per collision with neutrals and ions even for electron energies up
to 2 ev(Gw10"3 at electron energies of 0. 5 ev and Go10°2 at electron energies of

2 ev). Thus it is a good approximation to assume that the velocity distribution

function for the neutral atoms and molecules and the ions remains Maxwellian and

that their temperature remains constant even in the presence of relatively strong

electromagnetic fields.

Initially, in the absence of an externally impressed electromagnetic field, the

electrons are in thermal equilibrium with the neutrals and positive ions behind the
high-temporature shock of a re-entry vehicle (this is true within about 100 mean

free paths behind the shock front). Hence the electron velocity distribution function

f is Maxwellian in the absence of an electromagnetic field and the electron tempera-

ture is equal to the gas temperature Te X T. Consider a c. w. electromagnetic
plane wave incident upon the plasma sheath with a frequency (w) much greater than

the electron-neutral collision frequency for energy transfer (GvY10 at Te = 50000K.

Gvul0+7 at TO. 20, 000¶ for T-50001C, p/ps 0 10"3 corresponding to a shock with
free stream velocity a 18, 000 ft/sec at 200, 000 feet). In this case, the relaxation

time for energy transfer between the electron gas and neutral gas (TEN) is much

greater than the period of the impressed electromagnetic wave TEN>> Teom e0 that

the average enerp. gained by the electron from the electromagnetic field will depend

upon the mean square value of the field. The increase in the average energy of the

electron, resulting from randomization of the electron's oscillatory motion through

elastic collisions with neutrals, will induce changes in the various electron energy
loss processes such a:

(1) Collsions which can excite electronic levels of atoms and/or molecules

(2) Collisions which can excite rotational and vibrational levels of molecules

(3) Ionizing collisions of atoms or molecules

(4) Dissociative recombination of ionic molecules and three-body recombnation
c6llisions with ionic atoms.

In addition to the elastic and various types of inelastic collisions of the electrons
with heavy particles, the effect of electron-electron collisions must also be considered.
Electron-electron collisions result in only a small relative fractional energy loss

per collision
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Gee ((4)3)

This is a consequence of the fact .that the total collision cross section for electron-

electron collisions is obtained by integrating the Rutherford differential scattering

cross over all angles down to a minimum scattering angle, corresponding to a maid-

mum impact parameter equal to the Debye length (see Ginzburg, p. 129).

71/2

Debye length .D L kz>+e re5

The fractional momentum loss for electron-electron collisions is of the same order

as the fractional energy loss for electron-electron collisions. Spitzer gives the

following expression [Eq. (3)] for the interelectron collision frequency

N 0 n A SEC"1

0ee e 11.4 A l/Zr e3/2

where A - 1/1823 for electrons and I n A it tabulated as a function of Ne and Te.

For a fairly wide range of re-entry conditions, especially in and near the stag-

nation region of vehicles traveling at 18, 000 ft/sec or greater at altitudes between

300, 000 and 100, 000 fit, the interelectron collision frequency (Vee) is several orders

of magnitude greater than the collision frequency for energy transfer between the

electron gas and the gas of heavy particles (ee >> GO). When this condition prevails,

any perturbation such as an electromagnetic wave applied to the partially-ionized

plasma will result in the redistribution of energy among the electrons in a: time

'ee 1 a/Pes which is much faster than the time for energy transfer between the

electron gas and the heavy particle gas (1/Gv).

Such an effect will have a pronounced influence on the response of a plasma to

a dynamic perturbation. The dynamic (time dependent) 'response of a re-entry plasma

sheath under the Influence of high-power electr6magnetic radiation has been care-
16fully analyzed by King. King's investigation proceeds from the WKB solution of the

wave equation for an electromagnetic wave incident upon a semi-infinite plasma.

The'va:idity of the WKB solution is restricted to cases where the changes in electron

density (or dielectric constant K) are small compared to a wavelength dK/dZ<4OA./A.

The WM method was developed in'cbnnection with obtaining solutions to the

Schroedinger equation. In this class of problems the DeBroglie wavelength is almostI
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always very small compared to distances over which the potential function varies.

Also, with reference to ionospheric propagation, the criterion for the validity of the

WKB approximation is met for frequencies in the megacycle range and higher. How-

ever the criterion may not always be met for electromagnetic propagation through

the re-entry sheath, where the electron density may vary by ten orders of magnitude
over a distance of about 1 cm with wavelengths in the centimeter range (Rotman and

Meltz 1 1 ). The WKB solution contains no information on the amplitude of the reflect-

ed wave, because reflection is neglected in the approximation of geometric optics.

Ginzburg17 has indicated a modification of the WKB method to include the effects of

weak reflection.

The starting point in King's 1 6 analysis is the WKB solution for the electro-

magnetic field distribution in the re-entry plasma sheath. The WKB solution is

written in the form

R- =Eo 0 4t exp Ix kd , (6)

where

k 2  2

k ko(Wc0 -ia0weo)

ko 0 wIc- 2wo

W 2

Nee2

Ne 022P

m(w2+p2)

a is the real part of the conductivity and the propagation direction in the direction

of the electron density gradient (x-direction). This form for the field distribution
is then substituted into the expression for enargy deposition per unit time in the

plasma (a E 2 ).

The fraction of the total energy deposited in the plasma which is responsible

for producing increased ioniiation Is given by feNR2 where f - a,/a and a, is the
ionization cross section while a is the total cross section. If this quantity is then
divided by the energy required to form an ion pair In the plasma, a, the result yields

the local rate of growth of electrons due to the electromagnetic field:
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-N -E (7)

at 9

The electron density appears explicitly on the left-hand side and implicitly on the

right-hand side of this equation. King 1 6 has obtained analytic expressions for the

time dependence of density by making a suitable transformation of variables. The

effects of diffusion and electron attachment may also be taken into account, although

the solutions may no longer be expressed in terms of known functions. The implicit

assumption of such an approach rests upon the relation.

where K is the effective dielectric constant

W 2 J(rli) W 2K-Kr + j•, - I .. ___ -_.
r 2+,2 •2+,2

2- Ne_

For the case of a medium with a time-dependent dielectric constant, Maxwell's

equations are:

curl E

OKIcurl"A - Co W-- (8)

This leads, in general, to a wave equation of the form:

2- 1 _a 2OK BE Ia

c t cc St

The WKB approximation is a valid solution of the wave equation only if

St
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which permits the terms

c2 c 2 t/

to be neglected and a solution to be obtained in the form E c AWt) eJot'. The
condition w» >> einNe let implies that the characteristic time for electron density
buildup is much longer than the period of the impressed field. This condition is al-
most always satisfied for most plasma-microwave interactions. A final point should
be made that no provision for changes in the collision frequency have been included
in the analysis, although such changes may generally be overshadowed by changes

in the electron density.
Only the steady-state response of a re-entry plasma sheath to high-power electro-

magnetic radiation will be considered in this report. The question of the relative
importance of the relaxation time for equilibration of energy among the electrons
(l/Pee) and the relaxation time for equilibration of energy between the electrons and
neutrals and ion (1/G') is important from the point of view of the dynamic response

of the plasma to the perturbation of an electromagnetic wave. However, even in the
steady state, electron-electron collisions can play a significant role in determining
the form of the isotropic part of the electron velocity distribution function. The
general form for the isotropic part of the electron distribution function in a partially-
ionized plasma in the presence of a strong electromagnetic field is not always given

by the Margenau18 expression

fr c exp m + 2e2E2 (9)

L 3mG(y2+w 2)

Where C u a normalizing factor

T = gas temperature
aP electron-neutral collision frequency (a function of electron velocity).

The Margenau expression for the electron distribution function was derived

under the assumption that electron-electron collisions are negligible (Vse<< GY).
However, as pointed out by Cahn19 and by Ginsburg and Gurevich,8 when thb inter-
electron collision frequency is of the order of the collision frequency for energy
transfer between electrons and neutrals (Neew GO), the form of the isotropic part of
the electron velocity distribution function is given by a rather complex expression
which reduces to the Margenau expression when oe, << Op andto the Maxw~llian
form when v >>O Gp.
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2. 1 The Boltmann Equation for a Partially onized Gas

The propagation characteristics of electromagnetic waves in a finite layer of
plasma may be described by a complex dielectric constant (or conductivity) which is
a scalar quantity in the absence of a magnetic field. The conductivity (a) is com-
puted by taking the first velocity moment of the electron velocity distribution function:

.. e E f ; d3v (10)

Ginzburg17 and Molmud20 have shown that Eq. (10) for the complex conductivity
reduces to the standard expression

N e 2  Nee 2w0
=rj m(w'• v ) m(wl2+v2

only if the collision frequency in Eq. (11) is replaced by an 'effective' collision
frequency (PEFF) given by Eq. (2) The effective collision frequency, as given by
Eq. (2), is valid only if 2 >> V2 . For the low-frequency limit (w2<< V2), the
effective collision frequency is defined differently. At intermediate frequencies, the
right-hand side of Eq. (11) must be multiplied by a parameter that is a function of
W•IIEFF. To utilize the exact Expression (10) for the conductivity, the form of the
electron velocity distribution function must be found by solving the Boltzmann equa-
tion.

The full description of a multicomponent system such as a partially-ionized
plasma involves a series of coupled Boltzmann equations for the distribution function
of each component.

!A+ - - If IV, 1 + -xij -11 -B B +J Benat ra Me m ye ee + %A0o1

~+ ;%onn

• Of

--JA V ¢B io+B + Bnn (12)
r n n, jIi
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where (fo) is the distribution function for the A th ion constituent, f is the distri-"lont th Inj
button function for the j neutral constituent, the subscript e refers to electrons, and

the subscript n refers to neutrals. Bran represents the contribution to the collision

integral for the distribution function of the mth type of particles in collision with an

nth type. The Boltzmann equations for the electron, ion, and neutral components are

coupled through the collision integral terms. The usual assumption made in investi-

gations of the interaction of radio frequency or microwave energy with a partially-

ionized gas is that only the electron distribution function changes, and the neutral

and ion distribution functions are assumed to remain Maxwellian at a constant tem-

perature. This assumption is valid when the collision frequency is relatively small

compared to the plasma frequency, the plasma is less than 1% ionized and when

the fractional energy loss of an electron per collision with a neutral is small

(G < 10.2 for electron energies below 2. 5 ev for most gases).

The macroscopic fields that appear in Eq. (12) are self-consistent, so that the

electrons do not interact directly with one another on a microscopic level (except for

distances less than the Debye length, I D). Instead, the ensemble of electrons give

rise to a macroscopic electromagnetic field which then can interact with the individual

electrons. The macroscopic fields that appear on the left-hand side of the Boltzmann

equation remain constant during a collision. This implies that, when considering

electron-electron collisions, the sphere of interaction must be less than a Debye

length (see Drummond, 2 1 p. 12).

The great majority of papers on the kinetic theory of electromagnetic wave

interaction with a partially-ionized gas neglect ion-electron and electron-electron

collisions (Holstein,2 2 Margenau, 18 ' 23 Reder and Brown, 2 4 Allis and Brown 2 5 ).

Cahn1 9 has discussed the effects of electron-electron and electron-neutral collisions

on the distribution function. Ginzburg and Gurevich8 have clearly indicated the

conditions under which it is permissible to neglect electron-electron and electron-

ion collisions in a partially-ionized gas. Elastic collisions between electrons and

neutrals may be treated in the most Atraight-forward manner. The expression for

the collision integral for electron-neutral collisions is obtained in terms of the

neutral particle density, temperature, elastic collision cross section, and the zero-

order electron energy distribution function. The derivation of these expressions

usually involves the assumption that the electron suffers only a small chahge in

energy on collision with a neutral (which is not necessarily true for excitation or

ionizing collisions). Allis26 has treated the case where account is taken of recoil

of the heavy molecule under elastic Collisions with electrons. Inelastic collisions

between electrons and neutrals are accompanied by the excitation of rotational, vi-

brational, or electronic levels and also by ionization and recombination. In addition.

charge exchange between ions and second-order impacts are possible, in which the

energy of an excited state of the molecule is transferred to incoming electrons.
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However, an exact calculation taking account of all these inelastic processes would

be exceedingly complex. The cross sections for many of these processes are known

exactly only in a few cases. In this report, the effects of charge exchange and

second-order impacts (inelastic collisions of the second kind) are neglected.
The Boltzmann equation for the electron velocity distribution function for a

partially-ionized plasma (the re-entry sheath) in the absence of a magnetic field

may be written:

A I- V 1+ 1 9- If -B + Be +Zen, * (13)
ft r m v ee 3 e

where E is the amplitude of the externally impressed electromagnetic wave and the

forces exerted on the electrons by the magnetic component of the wave are neglected.

Since diffusion is neglected in comparison with other electron loss mechanisms, the

Boltzmann equation may be solved for the case of a homogeneous plasma within each

section of the plane-layered medium. Hence, the Boltzmann equation may be written:

o 9 Bee+ Bei + Bej (14)

Ginsburg and Gurevich8 have shown that when the electron energy loss parameter G

is much less than one, a spherical harmonic expansion of the electron distribution

function converges rapidly, so thai the expansion may be terminated after the first

two terms

f(i,,,t) • f, (r, v.t)0 P (cos a) f0 + fl cos a , (15)

where the electric field vector is taken to lie along the Z-axis and a it the angle

between 2 and v.
Using the spherical harmonic expansion ( Eq. (15)0 , together with the expres-

sion for partial derivatives

6 - .0o 1 a 6 + siga( (16)
0 O)VX, Vy ý7a v ~ C )V

one obtains

AeE floE Cos san2 a ***XL 12 O
V M TV-P1 m v 8(cos a)
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eE I V 2f +A +d 2 dv 3Vf2 ) cona.... (7
m "m - 2 dvdv ....

If Eq. (17) and Eq. (15) are substituted into Eq. (14), and if then the resulting

equati•n is multiplied successively by Po (cos a), P 1 (coo &), P 2 (cor a) etc. , and

integrated over 2w sin a d a, the resulting chain of coupled equations is obtained

'f E _L 2 f 1) Bo (18a)
at 3my 2 8v

at 5v3 O (" B (18b)

where

and

dD 2w2sinna da

Since the electron energies will be considered only up to 2 ev, for which G m 10.2

for each of the constituents of high-temperature air, only the equations for fo and

f need be considered.*

2.1.1 COLLISION INTEGRAL FOR ELASTIC COLLISIONS BETWEEN
ELECTRONS AND NEUTRALS OR IONS

The collision integral may be evaluated by considering the rate of change of

the number of particles in a velocity volume element d 3 v. This rate of change may

be found by taking the difference between the number of particles scattering into

that volume element and the number scattered out:

* Actually, G - 10 1 at 2 ev for NO, but the NO concentration in a shock at 50006K
is less than or equal to 1/10 the concentration of N2 and 02.

t
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Bd 3v F M-F (f')f(')c a(e,c) dflOd'V'd~v'

- F(V) f ()c a(, c) d2 Ad 3 Vd 3 v 0 (19)

F(V) a distribution function for scattering particles
f(v) - distribution function for scattered particles

c a relative speed of particles

a a differential scattering cross sectiond2 Q - 2seine de

e - scattering angle a angle between -' and v - 1'.

The primes refer to the quantities before a collision and the unprimed quantities
refer to after a collision. By Liouville' s theorem

d 3v'd 3V' d3 vd3 V

so that the collision integral may be written:

B F •(F(l') f(,7) - F(V) f(v)] c Od2 Od 3V. (20)

Alli 2 6 has indicated how the spherical harmonic components of the collision integral
may be evaluated. If the spherical harmonic expansion for f(v) (Eq. (15)] is sub-

stituted into Eq. (20), and use is made of the addition theorem for spherical har-
monics,

a V' f, (V-) (a)P, (e) + 2 Z +f.~ m(a) -PP(O)coo 1ý(a.* (21)

where V * azimuthal angle, then the Boltzmann collision integral may be written

B- B, P1 (coo a)

where

B1 .* 3 F(f) f, (v" P, (0) ced2Id 3 V'-, _5 )f' (v)cgd2Od3V. (22)



The zero-order term in the spherical harmonic expansion of the electron-heavy
particle collision Integral representing elastic collisions may he written

Bbeas .2m IdF 31,(f,+ 2kT.dfl

I1 [V2(G m &o +vQ (23)

where m - electron mass
M a heavy particle mass
T a temperature of heavy particle gas
G - 3m/M~m - relative fraction of the enera loss of an

electron per collision with heavy particle

P * Nv Eav )(l-coa O)2'sln~dB.

Allis 26 has derived Eq. (23) on the basis of the assumption that the electron loses
only a small fraction of its energy in colliding with a heavy neutral particle (G<<l).
Also, it is assumed that the molecules recoil under electronic impact and they pos-
sess a Mazwe~llan distribution in velocity.

The first spherical harmonic component of the collision integral representing
elastic electron-neutral collisions may be immediately derived by using the fact that
the magnitude of the electron's velocity changes only slightly during an elastic col-
lision with a heavy particle 0v' w v and V1 a V), so that

el0As. . SC,(9 C) c(fv.) 1p(V t ) P (Cos 0) - f (v) F(V)) d 2 Od 3V

. _fl1(v)Sd3Vd2QWVF(V)(l~cos 9)

-v(v) f1 (v) (24)

where

vs Nv~'e(v, e)(l-cos 0) d 2C

where N m neutral particle density and P' Is the collision frequency for momentum

transfer.
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2. 1.2 COLLISION INTEGRAL FOR INELASTIC COLLISION BETWEEN
ELECTRONS AND NEUTRALS

Inelastic collisions between electrons and neutral particles result in the exci-

tation of rotational, vibrational, and/or optical levels of molecules. For a partially-

ionized plasma consisting of diatomic gases such as oxygen, nitrogen, and NO, the

dominant electron energy loss mechanisms for electrons of about I ev or lower en-

ergy are excitation of rotational and vibrational levels. The excitation of rotational

levels results in an energy loss of 10-2 to 10 4ev; whereas the excitation of vibra-

tional levels results in electron energy losses of about 0. 1 to 0. 5 ev. If the electron

energy distribution function is Maxwellian, then ionizing collisions can become im-

portant when the average electron energy is 1/10 or greater then the ionization po-

tential of any atomic or molecular constituent (NO has the lowest ionization potential,

9. 25 ev, of any constituent in high-temperature air). This is due to the long tail at

high energies of the Maxwellian distribution function.

In the present report, electromagnetic fields incident on the re-entry sheath

will be considered with intensities sufficient to raise the electron temperature from

5, 000"K (0. 5 ev) up to 20, 000*K (2 ev). Measurements of the mean energy of electrons

in swarm tube experiments together with Luxembourg (cross modulation) type ex-

periments make it possible to deduce the energy loss for electrons in this energy

range. Such experiments have been performed by Healey and Reed, 2 7 Harries,28

Haas, 2 9 and Huxley. 3 0 Table 1 (from Massey and Burhop 7) gives the fractional
energy loss of electrons X for the various constituents of air for electron energies

between 0 and 6. 0 ev.

Since, for an average electron, only a small part of the energy is lost below

and up to excitation of rotational, vibrational, and optical levels, the integral for

such inelastic collisions in a molecular plasma may be represented in the form

(Ginzburg and Gurevich8 ):

Binelas. I~ By nEF v2 (k ! + vf)]) (25)

where GEFF(V) describes the total relative fractional energy loss of an electron per

collision due to excitation of rotational, vibrational and optical levels.

V inel .N vihi (v, ) (l-cos O)d 2 a

and 'inel = cross section for such inelastic collisions. It may be noted that the
relative fractional energy loss parameter (G) is known from experiment only as a

function of electron temperature (T.), and not electron velocity.



20

0 C 0 In 0 U) 0.0 0 4

N 4'

.il

o 000•0 0•U

u I

0 to

oc

.,* Z • .. _, 4.NN .NN. . . .

o • o,4. U• oo~ooo ...
0 X v - - .

N m cin -0 0 n 40 In
4 m mo Nmo o .

z ,

N~~~~~ ~ ~ ~ C* t ot t iC qco0C

0 0n

E

kn 0 N N Nq 1- 0 N N -C 0 N

W , _4 _ 4_n _ v_____o_ _go _o _a

,-;. N N N N 4.-, .-, ,., ,,,, ..

-- to wt N 4.0 cm In

m, t .00l0 0t

1W~~~ __ __ _ __C4___



21

However this amount of information is sufficient for the present investigation, since
the Boltzmann equation (Eq. (18)] will be integrated over the zero-order distribution
function, which is Maxwellian. If cases are to be considered where the interelectron

collision frequency (Pee) is not sufficiently high compared with the collision frequency
for energy transfer (GY) to maintain a Maxwellian form for the isotropic part of the
distribution function, then G must be known as a function of electron velocity v.
This functional dependence may be obtained by solving the integral equation for G(v):

CGO(v) V(v) V4 rx F V]d %w(ý 5/2 G( v(26)0 3 dv0- -L m. EFF-e)

where the right-hand side of Eq. (26) is known.
The first spherical harmonic component of the inelastic collision integral repre-

senting electron impact collisions which excite rotational, vibrational, and optical
levels in the molecular plasma may be written in the form:

BIinelas inelasf1 (27)

where

,inelas - N v i.n (v, 0) (1 - cos 0) d2a.

and Oinel(v, 6) is the differential-scattering cross section for inelastic scattering.

2.1.3 COLLISION INTEGRAL FOR ELASTIC SCATTERING BETWEEN
ELECTRONS AND POSITIVE IONS

The primary assumptions made in the derivation of Eqs. (23) and (24) for elastic
collisions between electrons and heavy neutral particles were: (a) the fractional
energy loss of the electron per collision is small, (b) the electron mass is very small
compared with the neutral mass m << M, and (c) the temperature of the gas con-
sisting of the heavy particles remains constant regardless of the average electron

energy. Hence, Eqs. (23) and (24) for the zero- and first-order spherical harmonic
components of the collision integral may also be used to describe elastic collisions
between ions and electrons when the appropriate expression for the ton-electron

collision frequency is used. The equation

d20
"io u N, 0 v ~v(v,6) (1 - coo 9)d a2

to o
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governs the functional dependence of the electron-ion collision frequency on electron
velocity, where u(v, 0) it given by the Rutherford formula:

a e2•2 1

(2mv2 ) sinT0/2

where 0 - scattering angle and

Ni * particle density of ions - Ne.

Thus,

if a 2wNeV (.2 I'0s-Cx0) min GdO

&ei •2 Omin sin4 0/2

e -;" (1 0mini 2)• 2 iNe • in i+cot2gmn,)(28)

where Omin is the minimum angle of scattering corresponding to the maximum im-
pact parameter. Since, as shown by Drummond,21 collisions between charged par-

ticles which occur at distances greater than the Debye length are described by macro-
scopic fields which appear on the left-hand side of the Boltzmann equation, the maxi-
mum impact parameter will be taken equal to the Debye length IfD' Eq. (5)]:

2
£D tan Omin/2 * (29)

or

01  e 2  2e 2
emin" , tan" 1 v--m-v'-7- *

mv I D ;

Substituting Expression (29) for Omin into Eq. (28) yields:

4o v N2 • 
2 v

10 (v) -UN 0 In D(30)
ion e In
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Bachynski et al.31 have derived the expression for the contribution to the con-
ductivity of a plasma by electron-ion collisions. Their computation proceeds from

the formula

4we 2 Ne fflv3 dv

ion- ffgdov 2 dv2

where the vector g represents the flow velocity in velocity space (the collision

integral is related to g through the relation B = - j"). The vector g is evaluated

by considering the diffusion in velocity space and computing the average of the veloc-

ity change of a test particle after an encounter. The computation depends upon the

form of the electron distribution function. Bachynaki At al. 3 1 have presented a

treatment somewhat similar to that of Spitzer and Harm, 10 who have included the
effects of electron-electron collisions on the conductivity. Both treatments are based

upon the calculation of a transport coefficient (conductivity) in the presence of a DC

electric field. The AC conductivity may be related to the DC conductivity by the

approximate formula:

Ne
a e (32)
AC m(N' +e

It may be noted that Eq. (32) is valid only if Vion 4 (Vion)EFF, where (Vion)EFF

may be found by substituting Ylan [(Eq. (30)1 into Eq. (2):

(p, o)EF . !r 2 .. • e In (33)

i'on EFF 3 2 3/ eNn k)

which is valid when w 2 >> P2
EFF

Bachynski et al. have expressed the total conductivity of a partially-ionized

gas (VtotaI) as the geometric mean of two conductivities - one due to electron-ion

collisions (vion) and another due to electron-neutral collisions (cn):

I I +.1 (34)
'tota l  'ion 'n

This relation in valid, of course, only for the DC case, and is based upon the assump-

tion that the total collision frequency for electrons (Vtotal) is given by
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"total 'ion + 'neutrals (35)

where Y neutralh is the electron-neutral collision frequency.

As noted by Shkarofsky et al. 32 in a later paper, a more satisfactory procedure

than the relationship expressed by Eq. (34) exists for the computation of the total

conductivity of a partially-ionized plasma taking into account electron-ion and electron-

neutral collisions. If the expression for "total in Eq. (35) is used in the formula

for the first spherical harmonic component of the collision integral BI , - 'total fl,
then this expression for B, may be substituted into Eq. (18b) for the first spherical

harmonic component of the distribution function f1 . Equation (lb) is then solved

for f1 in terms of t, v, and total. This solution is then substituted into Eq. (10),

so that the conductivity is expressed as a minction of L, the frequency of the impressed

field w, and Ytotal. The electron-electron collisions produce two effects on the

conductivity. First, if Yee >> G', than fo is Maxwellian even in the presence of

strong electromagnetic fields. Second, there Is a first spherical harmonic compon-

ent of the electron-electron collision integral which introduces a correction to the

total collision frequency appearing in Eq. (10) for the conductivity. This correction

appears in the form (see Glnzburg, p7 p. 83):

"total - 'total (0 + Yee/W) * (36)

where Y ee is given by Eq. (3).

Shkarofsky et al., 32 have computed the electron collision frequency of high-

temperature air as a function of gas pressure and electron velocity by adding the

electron-neutral collision frequencies for each constituent and then adding the ion-

electron collision frequency [Eq. (30)] to obtairn the total collision frequency:

"total ' 'ion + ; Nj aQ(v)v . (37)

If W < ee' it should be noted that the correction term for interelectron collisions

(Eq. (36)] in appreciable, and should be added before substitution into the expres -

sion for the conductivity, Eq. (10).

2.1.4 COLLISION INTEGRAL FOR ELECTRON-ELECTRON COLLISIONS

Electron-electron collisions are characterized by the long-range Coulomb forces

which result in weak scattering. One of the primary differences between electron-

neutral and electron-electron collisions consists in the rdtio between fractional
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energy to fractional momentum lost per collision. For electron-neutral collisions,

this ratio is G; while for electron-electron collisions, this ratio is one. For

electron-electron collisions, both the energy and momentum are changed only slightly
per collision, where the fractional energy loss of an electron per collision (0 *) is
given by Eq. (4).

An important consequence of the small change in energy and momentum of an

electron in electron-electron encounters is the possibility of representing the col-

lision integral as the divergence of a particle flux in velocity space (the Fokker-

Planck expression):

V

where the particle flux density is given by:

j 9 ~¶cAVvc, 0 (f~v`) f ffl) - f (v) f~) d2 Gd3V (38)

c IV- I

Since the velocity of an electron changes only slightly during an electron-electron

encounter, the difference in the distribution functions before and after the collision

may be written:

f(•,) f•v,) - f(V-) fOV) .- Vv.-'P ,)l f(;.) -IA-¢ " - v- f(V-)i fv) , (39)

where AV - v' - v and & - 'V - 1. If Eq. (39) it substituted into Eq. (38) and use

is made of the fact that a(c, 0) has a maximum at 0 = 00, then the particle flux density

may be written:

d ' dV ~*(c){(,Cf(v) c- M~) - Wf( - f(.~

+ C2 [f(v) T •) - f() V r)I) (40)

where c -1

and



26

4 e2 In 2+
lot (c) UwNG " In(+ 04

Ginsburg and Gurevich 8 have shown how Eq. (40) for the particle flux density
may be used to derive the zero-order spherical harmonic component of the electron-

electron collision integral:

3ee 1 & (2
N ---T 9g)

1 w V [LA 14f)vfo +Ao ) O,.11 (41)

where terms of order f2 have been neglected compared with terms f2-. Here,

"" e (V 41P O v) r O dVA1(v 9(v) M- V f(V) dV
AI No .o

and

" V)-4W v6 (V) fyVf,(V)dV +v 3 r~OV V

The collision integral e identically equals zero when fo is Maxwellian.
The first-order spherical harmonic component of the electron-electron collision

integral may be obtained directly from Eq. (24):

. ., • [ (V') 9 _. o(VO )

v fo(V d2Qd2Kd3V (42)

where 0 io the angle between the relative velocities before and after the collision:

C' -
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d20 x 2w sin GdB

d 2 k = 2w sin Pd.

P is the angle between ; and I (in the laboratory frame). In the center-of-mass

reference frame, the relative velocities of the two particles (before and after the

collision) are equal in magnitude and opposite in sense: each particle in the center

of mass having a velocity equal to I/IC/. As a result of conservation of momentum

and energy /c /c / and 11 + + v. The velocity of the center of mass is

equal to f(V + v). In the laboratory reference frame, the kinetics of the electron-

electron collision may be represented by the three vectors: c' I Vf -.v', which is

the relative velocity of the two electrons before the encounter, c - V - v, which is

their relative velocity after the encounter (equal in magnitude to their relative

velocity before the encounter, but rotated by the angle 0), and the vector

=~~ ~~ -/ '=V +v

which is the sum of their velocities, and remains fixed in magnitude and direction

before and after the encounter. a(c, 0) is given by the Rutherford formula. Ginz-

burg3 3 has evaluated the vector integral represented by Eq. (42), and demonstrated

that the result may be written:

I -•- v1(v) (43)

where P - Pen + Yion' This result is noteworthy, for it leads to a correction term

for the total collision frequency: the sum of electron-neutral and electron-ion col-

lision frequencies must be multiplied by the factor (1 + tee 1w) when Eq. (10) isused

in the calculation of the conductivity.

2.1.5 COLLISION INTEGRALS FOR IONIZING AND RECOMBINATION
COLLISIONS

For most gas discharge phenomena, such as arc and glow discharges, the

primary electron production mechanism is ionization of neutrals by electron-impact.

Bond3 4 has found that electron-impact of neutrals is the chief ionization process

behind shock waves in noble gases. On the basis of ionization cross sections of

N2 , 02, and NO deduced by Massey and Burhop from data taken by Tate and Smith, 3 5

Un and Tears4 have computed the specific ionization rate due to electron impact

on the constituents of high-temperature air as a function of distance behind a normal
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one-dimensional shock. By examining the relative importance of various electron

production mechanisms behind strong shocks in air, LAn and Tears4 have demonstrated

that electron-impact is a relatively inefficient process compared with atom-atom and

atom-molecule collisions. However, if in the presence of an electromagnetic field

the electron-distribution function remains Maxwellian and the electron temperature

becomes equal to or greater than 10, 000K (1 ev), then ionization by electron-impact

must be considered. The dominant electron loss processes are dissociative recom-

bination (with positive molecular ions) and three-body recombination (with positive

atomic ions).

Margenau23 has considered the collision integral representation for ionization

and recombination collisions. To obtain an explicit expression for the ionization

collision integral, it is necessary to make an assumption regarding the division of

energy between the two electrons after the ionizing impact. Margenau 2 3 assumes

that the energy is divided equally (note that Peskoff6 takes into account the case

where one electron after the ionizing collision comes off with zero energy):

W)2 2v2+u
(v')2 =2v +ui

v dv' 2v dv

where vt equals the velocity of the incident electron, ui - I/m and Ei is the ioni-

zation energy. Margenau expresses the collision integral for ionizing collisions by

electron impact on a neutral constituent with a particle density (Ni) in the following

form:

SVBioniz 4rv2 dv- 4wN [ fo 1 vionj v3 dv + fVfo , v 3 d (44)"Oo0 0 ogo .o Lniv1

Here, aionj is the ionization cross section for the jth neutral constituent. The first

integral in Eq. (44) represents the production of two electrons with velocities less

than v due to an impacting electron with velocity greater than v. The second

integral represents the appearance of one electron due to ionization with an impact-

ing electron having a velocity less than v. When Eq. (44) is integrated over all

velocities, the totel rate of electron production due to electron impact on the j h

neutral constituent is given by:

-a Bioniz 4irv2 dv • 4wNj . o Oionj v 3 dv (45)
S o oo0
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Lin and Teare 4 have written the expression for the rate of electron production
in terms of the electron energy c - 1 mv2 :

(~) *~ (i~)' ~NjC exp(iiij)ein, (46)
• Ij

where Wij is the threshold energy for the iolizatibn croes'section of the jth con-

stituent, and fo is assumed to be Maxwellian:

(m '-mJ
fo Ne ~In 3) exp - 2(47)

Since NO has the lowest ionization potential of any constituent (equal to 9. 25 ev) and

the maximum electron temperature to be considered will be 20, 000CK (2 ev); kT is
e

always much less than the threshold energy for ionization (W,,) so that an aynmpottic

expansion of Eq. (46) may be made:

( --) = Ne(--j;) Nj exp W 1  onu (Wij) (48)

where vionj (Wij) is the slope of the ionization cross-section curve vs energy at the
threshold energy. By examining the curves of ionization cross section vs electron
energy given by Massey and Burhop for N2 and 02, Lin and Teare 4 conclude that, for

these molecules,

vi0no (Wij) Wij m wa - 0. 87 X 10"6 cm2

where %ois the Bohr radius.
Since the ionization cross sections vs electron energy curves forNO, N2, 02,

and the noble gases all exhibit the same shape (except for a displacement in the

threshold energy), Lin and Tears take

-16 2•,onj (w1 ) wi- " 0. 87 X 10i cm

for the constituents N and 0 also.
The total rate at which electrons disappear due to recombination with positive
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tons of particle density Ni is given by an expression similar to Eq. (45):

Brecomb 2B 4xv dv

4wNi o t o Ri (v) v3dv

4 NN1  m (,v2) )vsv (49)
""iw~ 2 _ )32 (v) expi -/(,

where Ni a particle concentration of ith constituent of positive ions

a a recombination cross section for ith ion constituent.

The isotropic part of the electron distribution function is assumed to be Maxwellian,
so that the rate of disappearance of electrons due to recombination with the ith con-
stituent of positive ions is expressed as a function of electron density (Ne), positive
ion density (N1) and electron temperature (Te). Now, the reaction rate for a two-
body interaction such as dissociative recombination (e + XY - X + Y) is defined as:

k dNe (50

By examining Eq. (49) and comparing it to Eq. (50), it may be noted that the reaction
rate for dissociative recombination is a function only of the electron temperature.
This important result is a consequence of the fact that the electron velocity is much
greater than the velocity of the heavy ion. The most general expression for a reac-
tion rate, which includes the case where the electron gas is not necessarily in ther-
mal equilibrium with the ion gas, may be written in the form:

d~t k NeN- V i )VrdSVed3V (51,(dt •f~e" OV • ,

where V. - electron velocity
VI a ion velocity

Vr a ion-electron relative velocity.

Because the electron mass is always much less than the ion mass, Vr a Ve. Hence,

k •'f(Vel e(Vel Ved 3 Ve (52)
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iUn and Teare 4 claim that the predominant electron production mechanism be-

hind strong shocks in air is atom-atom impact. Several of the most important reac-

tions include:

(a) N+O+2.8ev- NO+ +e

(b) N+N+5.8 ev--N+ +e

(c) O+O+6.9ev-0O+ +e (53)

It may seem surprising that reactions (a), (b), and (c) are more important for elec-

tron production in air shocks than ionization by electron impact, since electron im-

pact was found to be the predominant mechanism (several mean free paths behind the

shock front where an appreciable electron concentration has built up) in Argon shocks

(Bond 3 4 ). The reactions [ Eq. (53)] are efficient electron producers, even though

the average kinetic energy of the atoms is considerably less than the energy of the

endothermic reactions, because the presence of crossing of the potential energy

curves of the colliding atomic system lead to a large cross section. However, direct

electron impact on neutral constituents will start to compete with and even predomi-

nant over neutral-neutral impact, as an electron production mechanism when a high-

inten:Sity electromagnetic wave is impressed upon the ionized flow field. From an

analysis of potential energy curve crossing, in conjunction with a somewhat heuristic

curve-fitting procedure, Lin and Teare4 arrive at an estimate for the forward reac-

tion rate, (a) of Eq. (53). The equilibrium constant is then determined from the

partition function. The assumption that the detailed paths of the atomic states are

the same in the forward and backward directions (probably not a justified assumption,

see Biondi 42) permits IUn and Teare4 to write the dissociative recombination rate

corresponding to the reverse reaction (53a) as:

kr = E (54)

where kf is the forward rate constant

kr is the reverse rate constant

KEQ is the equilibrium constant.

For Te < 10,4 OK, Ln and Teare arrive at a dissociative reaction rate

k(a) . 3 X 10"3T'312 cm 3 /sec (55)r e
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The rather fast rate for dissociative recombination predicts that k = 6X10"7cm3 /sec
at T - 300", which appears to agree with the rate coefficient of 2X10 6 deduced by

Doering and Mahan4 3 from photolysis experiments of NO. This piece of experi-
mental data, together with Sugden's44 observation at flame temperatures, forms
the basis of Lin and Teare's acceptance of Eq. (55) as the correct expression for the
dissociative recombination coefficient for NO+. Unfortunately this particular choice
of temperature dependence is unrealistic on physical grounds. This may be seen by

writing Eq. (52) in the form:

.0 3 2)

k - 4: (mý3/ ¶ON) v exp ~~2) dvý

where the electron velocity distribution function has been assumed Maxwellian. It
may be noted that Eq. (52) and Eq. (55) are compatible only if the velocity-dependent

cross section assumes the form:

(vv
V

which is not plausible from a physical point of view, especially since the cross

section must assume a finite value as the electron velocity approaches zero.
In the present analysis an accurate knowledge of the dissociative recombination

rates corresponding to the reverse reactions, (a), (b), and (c) of Eq. (53), is neces-
sary not only for the computation of the steady-state electron density achieved in the
re-entry plasma sheath under the influence of high-power electromagnetic waves in
the microwave range, but also the electron temperature must be determined from
an energy balance equation by a procedure to be outlined in Section 2. 3. 2. The

terms in the energy balance equation which represent energy loss of the electron
gas due to dissociative recombination involve derivatives of the recombination rate

coefficients with respect to electron temperature, The T3/2 temperature depend-
e

ence for the dissociative recombination coefficients of the reverse reactions (53a,

b, c), as quoted by Lin and Teare,4 predict a zero energy loss by the electron gas
on dissociative recombination; a result which is not realistic from a physical point

of view. Since there it a paucity of experimental data on dissociative recombination
coefficients over extended temperature ranges, the procedure to be adopted in this
report will consist of assuming a functional form for the associative ionization rate
[Eq. (53a)], and then making a least-squares fit to the experimental data of Lin's

determination of the associative ionization cross section for 02 - N2 mixtures. 4 5

The dissociative recombination rate will then be determined from Eq. (54) (Section

2.3. 2).
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The recombination of electrons with the positive atomic ions e+ and N+ will
proceed primarily by the process of three-body recombinations. Radiative recom-
bination will be neglected. The concentrations of 0+ and N+ become appreciable at
distances of ten or more mean free paths behind the shock front (see LUn and Teare4 ).
In the absence of electromagnetic field, the chief mechanisms for production of N+
and 0+ ions are atom-atom and atom-molecule collisions:

O+M-"M+O++ e (56a)

N+M-M+N4++e (56b)

Unfortunately there is at present no reliable experimental information on the rates
of reactions of Eqs. (56a) and (56b). Even though Lin and Teare4 indicate that esti-
mates of the three-body electron-ion recombination coefficients based on the cls -
sical Thomson36 theory yield rates that seem to be several orders of magnitude too
large, calculations based on the Thomson theory will be utilized in this report for
want of more accurate information.

Massey and Burhop7 have derived the three-body electron-ion recombination
coefficient by computing the total probability that an electron will suffer a collision
with a neutral, lose most of its kinetic energy, and simultaneously remain within a
distance 'rot of a positive ion. 'rot is the maximum distance of electron-ion separa-
tion for which the two particles can describe a closed orbit:

ro X-2e 2 - , (56)

my

where v - electron velocity, which is much greater than the ion velocity. The Thomson
cross section for three-body electron-ion recombination is:

4w 3 G(v) 1
R~ 3 - o T(v5)

where X(v) - mean free path for electron-neutral collisions. Using the fact that the
electron-neutral collision frequency v(v) ts given by Y(v) - v/M(v), the rate of dis-
appearance of electrons due to three-body electron-ton recombination is given by:

(dNe,) . Brecomb" 2S1o oL.0
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N1  'fo (33,(Zv,) r G (v) V"(v) • 41v 2dv

i 3/2 / r- 2'

,iNe e , [ ,EG ,(v). M) exp dv,
N1 N* -T N23 0 j

where G (v) in the fractional energy loss of an electron in collisions with the jth

neutral constituent

and r (v) is the electron collision frequency for collisions with the jth neutral con-

stituent.

Eschenroeder37 has calculated the three-body electron-ion recombination co-

efficient according to the Thomson theory, but has misinterpreted G as the frac-

tional energy loss of an electron for electron-ion collisions, instead of electron-

neutral collisions. For a given neutral species, G(v) may be computed by solving

the integral Eq. (26). The collision frequency i(v) may be computed for each species

by using the total cross section vs electron energy curves as tabulated by Shkarofsky

et al. 3 2 The relative concentration of each neutral specie may be found from Figure

4. 1 of the report by Bachynski et al. 3 5 It should be noted that Eq. (58) is a generali-

zation of the Thomson three-body electron-ion recombination formula for the case

where the electron temperature is not necessarily equal to the gas temperature and

the role of the third body is played by a mixture of neutral constituents.

L.2 Bolutlone of the Zero Order and First Spherical
Harmonic Components of the BDoltzmann Eqation

The zero-order and first spherical harmonic components of the collision integral

which appear on the right-hand side of Eq. (18a) and (18b) represent the sum of all

types of electron collisions:

B Bel+ inel+ ion +ee
B o o B0 B; (590

el nel on BflBee
B1. BI+ i + + (59b)

Substituting Eq. (59a) into (18a) and (59b) into (18b) yields:

9S (2f j 1,J) + Gv. V2 L[rT!! +vf

,,, mv2 ft 2vf v 2 1  ' MM ion mF

(60a)

+l I -t2 F A (v)vf° + A + Bonis + Borecomb.
2vf 1 2vjj 0 0
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+ = + --(V+ V ) (60b)m v Vion) I W ion)1(6b

where P M NJ fv aj (0, v)(l-cosg) d2 a

Nj is the particle density of the jth neutral constituent and oa is the cross section

for elastic and inelastic scattering.

The term

A a ý2 1 A() vf° + A2(v

v2 av2

is of the order (veefo). Hence. the form of the function fo depends upon the relative

magnitude of the parameters P e and Gy.

The condition vee >> Gv is sufficient to guarantee that f0 be Maxwellian, even

when ionizing and recombination collisions are present for the conditions considered

in this analysis. These conditions include the facts that (1) the plesma is less than

0. 1 pcr cent ionized, and (2) the fractional energy loss of an electron per collision

G is always less than or equal to 10-2.

Ginzburg and Gurevich8 define a strongly ionized plasma as a plasma for which

the condition &Pee >> G' pertains; and a weakly ionized plasma as one in which the

condition Pee << G is satisfied. Under the assumption that iornz and Brecomb
ee0 0

are zero, the Boltzmann equation for the isotropic part of the distribution function

( Eq. (60a)] may be solved for the general case (v e m Gv) by the method of suc-

cessive approximations. As noted by Ginzburg and Gurevich, this method converges

rapidly because variations in fo cause only small changes in thle parameters Al and

A 2 [defined by Eq. (41)J. In the first approximation, a Maxwellian distribution

function

,/m 3/2 .m2

fo0 =Ne 2,- ef exp (61)

is substituted into Eq. (60a). By a method to be described in detail in Section 2. 3,

the electron particle density is found by taking the zero-order velocity moment of

Eq. (60a) and the electron temperature is obtained by taking the second velocity
moment. Then, the second approximation to Eq. (60a) may be written:

'v vdv [.GSin + 2m o + ! 02
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where a - (aon + aion)(1 + ee/ w) and C isa normalizing constant. Here,

kTe o k tA ee(v) ,(y).• *y exp(.y2]

where

0(y) " *-o exp(-'s 2) du (error function)

y Yý

In the derivation of Eq. (62), it has been assumed that 8foo/Ot , 0 (steady-state

case, w» >> G j ). An expression for f has been obtained from Eq. (60b), where

f has been assumed proportional to eJ . This result was first obtained in a some-

what different manner by Cahn1 9 and later by Ginzburg and Gurevich. 8

Equation (62) is the most general expression for the electron velocity distribu-

tion function in a partially-ionized multicomponent plasma (in which ionizing and

recombination collisions are neglected). For positions on a blunt-nosed re-entry

vehicle's surface at distances of two or three nose radii back from the tip, particu-

larly for vehicles traveling slower than Mach 16 at 200, 000 ft, the temperatures

and pressures behind the shock are such that Yee m G'. For this case, Eq. (62)

should be used in calculating the electrical transport properties (conductivity) of

the plasma. However, in this report, only regions in and near the stagnation region

of re-entry vehicles at 200, 000 ft and traveling at about Mach 16 or greater will be

considered, for which Y ee >> Ga. In this case it may be shown that Eq. (62) reduces

to Maxwellian form (f0 - foo). For the other extreme (aee << GO) it may be shown

that the general expression for the isotropic part of the distribution function reduces

to the Margenau form [ Eq. (9)) . Only for the case a'ee >> Ga is the computation

of the changes in electron temperature, electron density, and collision frequency

due to the presence of an electromagnetic field relatively straightforward, because

the ionization rates, recombination rates and fractional energy loss parameters are

known directly in terms of electron temperature.

The solution of the equation for the first spherical harmonic component of the

electron velocity distribution function [ Eq. (60b)) may be written:

"-m w + (Y + Yion)(l + aeeW)j .v
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Utilizing Eqs. (63) and (10), it is possible to find an expression for the AC con-

ductivity of a partially-ionized plasma in terms of the isotropic part of the electron

distribution function (assumed to be Maxwellian in this case), the frequency of the

applied field (w), the total electron-neutral, electron-ion, and interelectron collision

frequencies, and the electron density:

-- ;fd3v 1 .3.

where fr lies along the Efield, taken along the Z-axis. Substituting Eq. (63) into

Eq. (64) yields:

o e2 N F w•m ci, (u)(1.+i2 __ /w,)vu4e'U2 du 4-• C= • -du2 2 - " (58e2

V-(-o*V 2w si Odveel F)2 "o f +3 v (64)eeOOl

u v

(2 2 4\

Ve() = 2 e -•3n e•" v

The conductivity is related to the dielectric constant (MKS) through the relation:

Eq. (64 (66)ds

a = 8 a+ju(. e ~ (65)

Typical parameterri for regions, in and near the stagnation region of blunt-nosed
re-entry vehicles at 200, 000 ft at Mach 16 are:

we e

N E N X 10 erei/sec

U

101 rad/oe
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V M5X 109 coll/sec

V N 109 col/sec

G ft5X 10-
3

V t 50Gv .ee

For the case of a monochromatic plane wave incident on a slab of plasma (having

the characteristics of the re-entry sheath), most of the electromagnetic energy will
be coupled into the plasma only if the frequency of the plane wave (M) lies within a

factor of two or three times greater than or less than the plasma frequency Wp:

p, /3 < w < 3w P. Otherwise, most (90 per cent or more) of the energy will be either-

reflected from the first interface or transmitted through the slab. However, since

the nonlinear properties of the plasma sheath (changes in electron density and col-

lision frequency) will be manifested only when there is appreciable coupling between

the electromagnetic wave and the plasma, the following conditions will pertain to the

range of parameters where maximum nonlinearity occurs:

W2 > 2

and vee/ << I.Ce

This implies that the dielectric constant may be written in the form:

where ilFF Is defined by Eq. (2):

V _m5/2 ,M ,v) 4 exp( mY2 dvEFF W
NEFF= i'-(v) le dv

and Nee2

p me0
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Hence, for the high-frequency case (w2 >> V2) the total effective collision frequency

is the sum of the effective collision frequency between electrons and neutrals and the

effective collision frequency between electrons and ions:

VEFF = (Pen)EFF + (Vion)EFF

where (P ion) is given by Eq. (33):
EFF

ion)EFF (kT,)- e2 )

Thus Eq. (67) for the dielectric constant will form the basis for the computations

of the nonlinear transmission characteristics of the re-entry plasma sheath. The

parameter 0 en)EFF may be calculated from a knowledge of the electron temperature

Te, electron density Ne. and the concentrations of the neutral constituents Nj, to-

gether with their respective cross sections aj. The concentrations of the neutral

constituents are calculated from the graphs of the total relative density (p/p ) pro-

file and gas temperature MT) profile behind the shock front found in the AFCRL

report by Rotman and Meltz 1 and the curves of the relative concentrations of the

neutral constituents 02' N2 , 0, N, and NO plotted as a function of p/p and T

located in the report by Bachynski et al.38 (Figure 4. 1). The total cross sections

for electron scattering a (v) may be found in the report by Shkarofsky et al. 3 2 for

the various constituents 02, N2 . N, 0, and NO plotted as a function of electron

energy I my 2 ). The procedure for the determination of Te and Ne at each point

in the plasma slab will be discussed In Section 2. 3.

2.3 Particle Conservation and Energy Conservation:

The Zero and Second Velocity Moments of theBoitgmnan Equation

2.3. 1 THE STEADY-STATE ELECTRON CONCENTRATION

When vee >> Gv, f is Maxwellian and an expression for the electron density
ee 02

may be obtained by multiplying both sides of Eq. (60a) by 4wv 2 dv and integrating.

The following expressions are the only nonvanishing terms which result from the

integration:
a BNe

4v 2fdv x Ov e (68a)4 .fo
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Z CE8 iOnpz 41rv 2dv a 0 Z Nv Cf 33dv.00. in

- N We in LNj e -W ia 2(68b)

"("e 0 N Cr 3

Z C hre-o. recomb. 4v2dv N 41r (v,) v3dv
0 0o Z *o (68i

"(wN )•Ni Gwiv) 4' 0 ) lw Nov-'exp(• -mv2)3 dv

"* NeZ Nik1 (T,) (68c)

Z ~e-oyrecomb. 4w* 2dv =Ne (12) W-- m] / (68d)

(EN ~ Gj(v) Vi (V]- 1 expj~ dv.

Equations (68b), (68c). and (68d) have been derived in Section 2. 1. 5. Since, in the
steady state, the electron density it equal to the sum of the ion densities (N. - ZNi),
the zero-order moment of the Boltsmann equation for the isotropic part of the dis-
tribution function may be written:

d dNi ::""e)1/ Z exp (-* ij -w N~ Zi ke (69)-t d-t rs •(_ýe) 0 e oTe

(E- NE)-e -)~ (N 1 ) " •ex ) •dv.

It should be noted that Eq. (69) does not include the effects of electron production
resulting from 'external' agencies, such as photoionization, and neutral-neutral
impact. I

On the basis of [An and Teare's investigation, the examination of the many
possible electron production and recombination mechanisms (such as atom-atom
man atom-molecule impact, electron-neutral and electron-ion impact, photoioniza-
tion, electron-neutral atta-chme-, dissociative recombination, and three-body recom-
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bination) Indicates that the following reactions are the predominate processes in the

presence of an elecmromalgetic field which raises the electron temperatmre from 0.5

to 2 ev:

14 + O - NO + e (1)

N+N-N + + (2)

0+0-O2 +e0 (3)

X+N-N + X +e (4)

+
O+O-O2 +Xe (5)•i:••x + 0 - e + X + & (5),

NO + e - NO + 2e (6) (70)

02+e+-O2 + 2e (7)

N 2 +e-N2 + 2e (8)

N+e-N+ +2e (9)

O+e--O +2.e (i0)

Ne =N+ +O+ +N2+O2+NO+ 0 11)

Then, the rate of production for each ionic specie Is given by the expreshions:

d(NO) (N)(O) + (NO )(Ne-k (NO)(Ne
:it " 1  f6  a r 1  0

d()•+) N k3 (N )(N)-k (N )(Nt "f 2 + 2 r " kr3

Sd(6O2) 2f1I )t (2(Nel (O +)(Ne (71)d " (0) + k" (0 2  a r 2  2 e

3 7 3

e0 5 r 5 5

4c on r 4  a

Using particle conservation, charge neutrality, and the steady- state condition
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an equation for the steady-state electron density may be obtained from expressions

(71):

N k,,, On 2f f1e +r + 4 f (72)

where kfn r-ftro to the rate of ionization of neutrals by electron impact.

N ion = 'e -N exp(--i)(1S2)

where N, is the particle concentration of the jth neutral constituent. The relative

concentrations of N, 0. N2 . 02, and NO as a function of p/p 0 and gas temperature

T are taken from Figure 4. 1 of Bachynaki et al. 3 8 The ionization potentials of these

constituents are given in Table 2:

TABLE 2

Wi(ev)

NO 9.5

02 12.5

N2  15.7

N 14.5

0 13.6

The relative density (p/p ) and temperature profiles along the line located at

450 with respect to the axis of the hemisphere cylinder are given in Rotman and

Melts. 1 1 These profiles were determined for equilibrium flow conditions in which

the boundary layer is neglected. The nonlinear electromagnetic transmission

characteristics of the re-entry sheath computed in this report will be based upon

the calculations presented in the report by Rotman and MeltzII for the line located

at 450 with respect to the axis of the hemisphere cylinder.
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The forward rate for reaction (1) will be obtained by taking a theoretically de-

rived expression for the associative ionization cross section and making a least-

squares fit of this functional form to the experimental data of Lin.45 This procedure

will be explained in detail in Section 2. 3. 2 in connection with the energy loss of the

electron gas in dissociative recombination. This will give the expression for kfI.

The expression for the dissociative recombination coefficient kr will be obtained

through the equilibrium constant

kf

Ir KF

where KEQ (. 4 X 10"8T + 1. 2 X 10 1 2T 2 + 1.4 X 10" 16 T 3 ) exp (-32, 500MT).

For want of better experimental data, it will be assumed that the dissociative recom-

bination coefficients of the reverse reactions 1, 2. and 3 will all be equal:

kr I kr2 -kr3 .

Then the forward-rate coefficients for the associative ionization reactions (2) and (3)

will be determined from their respective equilibrium constants:

kf (K2EQ) kr

f'2 Q2 r 1

and

k• (•3) k3 3 rI

where the equilibrium constants for reactions (2) and (3) have been obtained from

the partition functions (Lin and Teare 4 ):

K2  - i,0"%r + 4 X 10 12T2 + 10"l 5T3 
- sx i0" 20 T4 ). exp(-67. 300/T)

K - 0(l. 6 X 10"aT + 1. X lo r + X3.5 X o'eTI) • exp(-8o. 10O/T)

The forward rates for reactions (4) and (5) were estimated by the simple col-
39 40

lision theory presented by Eortner and tabulated in the report by AtallahA:
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(N; k N

(1) N )(okfI

(2) (N)(N) KEk
1

(3) (0)(0) KEQk3r

(4) W(XN) 4.86 X 10"I2Tiexp(-S3S, O00/RT)

(5) (X)O) 4.62 X 10"2T*ep(-313, 000/RT).

Lin and Teare4 have pointed out that there is no direct experimental data available

in the literature for the forward rates (4) and (5). The backward rates may ,be

computed on the basis of the Thomson theory. It should be noted that the terms

(N;)k, which appear in expressions (67) for the electron density (Ne), all play the

role of a constant. These terms are constant for they are functions only of the

neutral concentrations and the gas temperature (and not electron temperature).

Both the gas temperature and the concentrations of the neutral constituents are as-

sumed to be unchanged in the presence of the electromagnetic field. This is a good
assumption because the degree of ionization of the plasma sheath is between 0. 1 and

0. 01 per.cent or less .(p/p• 10"l to lo-2, Ne J 1012 or 1013 elec/cm).

The terms kr iin Eq. (73) refer to the backward rates of reactions I through 5.

The backward rates I through 3 refer to dissociative recombination. Since the

temperature dependence (Te- ) of the dissociative recombination rates correspond-

ing to the backward rates I through 3 as given by Lin and Tears is inadequate for

the purposes of the present analysis because it predicts zero-energy loss of the

electron gas on dissociative recombination, the dissociative recombination rate for

the reverse of reaction 1 will be determined by making a least-squares computation

to be explained in Section 2. 3. 2. The dissociative recombination coefficients cor-

responding to the reverse reactions I through 3 will all be assumed equal. The

backward rates of reactions 4 and 5 refer to the Thomson three-body recombination

coefficient, generalized to the case of a multicomponent plasma where the electron

temperature is not equal to the gas temperature [Eq. (58)1:

krmi kr .I16 t32 Edv )I- exp, "a-M dv,r4  r ~ 1 o )JJ \ 1

SM(v) is the fractional energy loss of an electron per collision with the jth neutral

constituent. The parameter 0 is usually determined as a function of electron
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temperature (T.), and is limed in Table 1 for various gases. Notice that the three-

body ion-electron recombination rates [ Eq. (58)1 do not have to be calculated by
first finding G(v). Thin would involve solving the integral Eq. (26) for M(v) for
each constituent, and then substituting the result into Eq. (58). A much more ele-

gant technique consists in taking the right-hand side of Eq. (26) (known for each

constituent) and integrating four times with respect to electron temperature. This

will yield the correct form for the generalized Thomson three-body recombination

rate:

r. r,. o-u v 0 JEFF

The effect of charge exchange has been neglected in the derivation of Eq. (72) for the

electron density. This mechanism appears to have a relatively small effect on the

total electron concentration. Under the action of the charge exchange mechanism,

the relative concentrations of the various ionic species may change. This may

produce a change in the total electron concentration, because the electron-ion re-

combination rates are specie dependent.

2.3.2 THE ENERGY BALANCE EQUATION

When the relaxation time for energy transfer between the electron gai and the

neutral gas is much greater than the period of a monochromatic electromagnetic

wave impressed upon the plasma 0 1 » T = 2w1w), then the electron gas will

no longer be in thermodynamic equilibrium with the neutral gas but will achieve a

temperature that depends upon the mean square value of the impressed field. In

the steady state the temperature of the electron gas is determined from an energy

balance equation. This energy balance equation, obtained by taking the second

velocity moment of the Boltzmann equation for the isotropic part of the distribution

function [Eq. (60a)0, is an expression of the fact that in the steady state the energy

acquired by the electron gas due to ohmic heating by the electromagnetic field is

equal to the various electron energy loss processes. The electron energy loss

processes for a multicomponent plasma include:

(1) Elastic electron-neutral collisions

(2) Elastic electron-ion collisions
(3) Electron-molecule collisions which excite rotational, vibrational, and

electronic levels

(4) Ionizing collisions by electron impact on neutrals

(5) Ion-electron dissociative and three-body recombination collisions.
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All of these processes will be taken into account in the computation of the steady-

state electron temperature. Other electron energy loss processes for a particular

point in the plane-layered plasma slab that may be neglected in the energy balance

equation include:

(6) Heat flow due to electron-electron collisions

I KeefTe) VTe- Kee(T) V2T,

(7) Heat flow due to electron-neutral collisions

SKen(Te ) V2 Te - Ken(T) V 2 T|

(8) Heat flow due to particle diffusion

[642T6  VN Ve-64k T VN 6 V]
Le9 " ""EFF EFF

These last three electron energy loss processes will be shown to be negligible in

Section 2.4.

There are several important facts that bear careful consideration. First, the

term (2m/M)vion in Eq. (60a) refers to elastic collisions between electrons and a

single ion specie of ' average' mass M. The general term for a plasma containing

many ionic species would be written:

4i 1N D4 / Dm v 2 '

ZL n (--flV---)J

where Mi in the mass and Ni the particle concentration of the ith ionic specie. The

approximation consists of replacing Mi by an average mass M and ZN1 - Ne (steady

state). This results in a great simplification of the equations while introducing only

a small error.

Another important point involves the precise balancing of all energy gain and

loss processes of tWe electron gas. It was previously mentioned that electron

production mechanisms due to external agencies, such as neutral-neutral impact,

are not included in the collision integral terms appearing on the right-hand side of

the Boltzmann equation [ Eq. (60a)4. Processes such as associative ionization cor-

responding to the forward reactions (1) through (3) and ionization by neutral-atom

impact corresponding to the forward reactions (4) and (5) have been taken into ac-

count in the expression for the steady-state electron concentration, Eq. (72).
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Moreover the forward reactions (1) through (5) constitute a net energy gain by the

electron gas which is not changed by the presence of an electromagnetic field since

the forward reactions do not depend upon the electron temperature. However the

dissociative and three-body recombination processes corresponding to the backward

reactions (1) through (5) constitute an energy loss to the electron gas which does

depend upon the electron temperature.

The consideration of the energy gain and loss terms due to ionizing collisions

by electron impact corresponding to the forward reactions (6) through (10) is more

subtle. The creation of a new electron by electron impact on a neutral constituent

represents a gain of energy by the electron gas, which may be computed by taking

the second velocity moment of the collision integral for ionizing collisions. The

impacting electron, which is responsible for the ionization, suffers a loss of energy,

which is included in the parameter G. This is because G represents the 1213.
fractional energy loss of an electron due to all electron-neutral collision processes-

elastic electron-neutral collisions, collisions which excite vibrational, rotational,

and electronic levels of molecules, and ionizing collisions. In the absence of an

electromagnetic field, when the electron gas is in thermodynamic equilibrium with

the neutral gas, each of these numerous processes occurs at a rate such that there

is no net gain or loss of energy by the electron gas. The application of an electro-

magnetic field to the ionized flow field results in an elevation of the electron tem-

perature with a consequent change in some of the rate processes. The energy lost

by the electromagnetic field to the plasma is dissipated only by those energy loss

processes over and above what is suffered by the electron gas when in equilibrium

with the neutral gas. This implies that each energy gain or loss process of the

electron gas must be represented in the energy balance equation as the difference

between two terms. One term refers to the energy gained or lost by the electron

gas in the presence of the electromagnetic field at the elevated electron temperature

(Te) and electron density Ne(Te), whereas the second term refers to the energy

gained or lost by the electron gas when in equilibrium with the neutral gas at tem-

perature (T) and electron density NeM. Thus, it may be seen that each term in

the energy balance equation refers to an energy gain or loss by the electron gas

corresponding to the difference between two states of the electron gas: one state of

the electron gas is at the temperature T. and electron density Ne(Te) in the presence

of the electromagnetic field, the other corresponds to the equilibrium state at tem-

perature (T) and electron density Ne(T). The appropriate terms in the energy

balance equation are:

The time rate of change of the total kinetic energy in the electron gas:

d- (wm Tv'fodv) 3 k d I Ne(Te)TeI (74a)
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The ohmic heating of the electron gas by the electromagnetic field:
S a N(Te)2vEFF E 2

4''-.•°3lV"erE2 (74h)

• 0 MWII

where

EFFexp dv"

Electron energy loss due to elastic electron-ion collisions and inelastic
electron-neutral collisions.

21rm 0' •• P + MGo(v)IDi(vj v)8 V3• •- + vfo) dv

(7 4c)

S(2M) NITe) k(Te-T)(vion) +EG (T,) FPEFF(TO]ked CEF 7eTe)CTC-T)~ ~j • ion EFF j

'where

(v 1 ~2 4iiv NeCTe2

EFF OcTO) e

Energy gain.of the electron gas due to creation of new electrons by ionizing
electron-neutral colllions.

4ioniz ioniz ioT

S(2wm) Fv [8ofi (Te) - B~o1~ dv

"= • 2m N r [f, (T.) - fo(T] 0ion v dv (74d)

Z(2arm) C I4 ioaizCT) Bionit(TJ) dv - Z ,Bitoliz (T )-T BioliZ(T.

"., k eE 0de Ne 0 TJ0 e "o o.4rv dv+ *T - Z BorCT*) 4wv 2  kT2 _ Bioniz(r)4,rv2dv

__2 (dN onzd_ Bioni(T).

kT d T)4 v1, T
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*2kTeNe C)(-SX) Nexp-- (,a 2)

SkT ',l/2f Wi 2

Z8k) (wan)

-2kTN O(T) (ý) Z N, (..j j.) 2ra

Energy loss of the electron gas due to dissociative recombination

2wm C. [EB dsoc. recornb. .Te B dissoc. recomb. vr v4 dv

5* 2wm Z Ni C O[o(Te) - fon`)] ODRi v dv

e

* 3 kTe ,) ZNin(T) ki(T,) + kr 2 N Ni) dk(Te) (74e)e N~r) Le e(Te) LN1 ) e

3 - krN cr) ZN CT) k (T) - kT2 N (T) Z N d(T) I

As mentioned previously, LAn and Teare's 4 choice of nCer) for the tempera-

ture dependence of the dissociative recombination rates (corresponding to the reverse

reactions 1, 2, and 3) is unrealistic from a physical point of view because it requires

the velocity-dependent cross section for dissociative recombination to assume the

form O(v) -8(v)/v , where 6(v) is the Dirac delta function. A n,;3(2) temperature
dependence of the rate coefficient predicts zero energy loss by the electron gas for

dissociative recombination. This implausible result is a consequence of the curve-

fitting procedure Lin and Teare have used for the determination of the associative

ionization rate corresponding to the forward reaction 1. Lin and Tear. have ex-

pressed the general functional form of the associative ionization cross section on

the basis of the Bates and Massey46 potential energy curve-crossing model:

QE>Ex xao -
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where E. equals activation energy and g is the ratio between the statistical weight
associated with the initial potential energy curve which leads to the crossing point

and the sum of the statistical weights associated with all possible initial potential

energy curves of the colliding atomic system. p is the reduced mass of the col-
liding system and Rxa° is the distance between the two centers of mass of the col-

1 2liding system at the point of crossing. E is the impact energy E -= pv2 (in electron
volts) and 7Al is the autoionization lifetime of the molecular complex. While there

is no definite information on the value of the autoionization lifetime of complex

atomic systems, the assumption that «Al << 10" 14 leads to a velocity dependent cross

section expressible in the form:

_- AE-1
QE> Ex

.where A is a constant. This leads to a velocity-averaged cross section of the form:

=BT
3 ' Q(E) E" expi r- E\'Ex d

=aT -/ exp(:jX

LUn 4 5 has measured the rate for the associative ionization reaction I in the tem-

perature range 40000 to 5000"K by monitoring both the DC conductivity and the micro-
wave attenuation in shock heated 0. 25% 02 - 99. 75% N 2 mixtures. The velocity-

averaged associative ionization cross sections for this data are plotted as a function

of temperature in Figure 5 of the report by Lin and Teare.4 In their report the

velocity-averaged associative ionization cross section for the extended temperature
range 300 < T < 30, 000"K in determined by fitting the functional form Q - AT'

exp(-Ex IkT) to the center of the experimental points in Figure 5 and choosing the
activation energy equal to its lowest possible value, the heat of the reaction Ex =

2. 8 ev. When the dissociative recombination coefficient corresponding to the

reverse reaction I is obtained by dividing the forward rate by the equilibrium con-

stant, this procedure leads to a recombination rate with a Te3/ temperature de-
pendence. Since this approach leads to the physically unrealistic situation where

there is no electron energy loss on dissociative recombination, a different proce-

dure will be adopted in the present analysis. A least-squares fit will be made of

the functional form for the velocity-averaged associative ionization cross-section

* a AT"-/2 exp(-BIT) correspondinr to 'Al >> 10"14 sec to the experimental points
given in Figure 5 of Lin and Teare. Since the activation energy must be equal to
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or greater than the heat of the reaction, the restriction B > 32, 500 will be added.

A least-squares fit may be accomplished by minimizing the function

W - .• ([(AB. Tk) - Qk 1

- 1 I

where QW(A. BTk) ATkI12 exp(-B/Tk) and (a constant)corresponds to the kth

experimental point at the temperature Tk (Figure 5). The minimization is achieved

from the relations 8W/OA a 0 and 8W/SB * 0, which lead to the expressions:

I• [ Wt, B. TOl- Qk] QA, BTk)=

and

Q [Q(A, B.Tk) - Qk) Q(A, B.Tk) 0.

It is relatively easy to eliminate the parameter A from these two equations so that

a single equation remains to determine the parameter B. Of course the result of

the calculation must yield a value for B such that B > 32, 500. Once the parameters

A and B are determined from the least-squares fit, the associative ionization rate

is determined from the formula

(A .T 1. ;01AT 1 ' exp(-T)

The dissociative recombination rate is then obtained from the equilibrium constant

42. 55 A~ exp(-~

where

K1 " - (1.4 X 10o'T + 1.2 X ljo-2T2 + 1.4 x o- 16 T 3 ) exp(-32, 500/T).

It should be mentioned that this procedure, while leading to a more realistic func-

tional form for the dissociative recombination rate, suffers from the same weakness
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as the development of lin and Tears.4 Bates62 has specifically pointed out that

attempts to use the principle of detailed balancing to determine the cross section

for associative ionization from measurements o' the dissociative recombination

cross section sre not justified. This is because the systems in their initial states

are usually in their ground state, whereas the final system it expected to be in an

excited state. Nevertheless the principle of detailed balancing, though not strictly

applicable, will be used in this report to obtain the dissociative recombination rate.

Finally it will be assumed that the dissociative recombination coefficients of the

reverse reartions 1, 2, and 3 will all be equal. The values thus obtained for these

rate coefficients will be utilized until moie reliable experimental information ti

available.

Energy loss of the electron gas due to three-body recombination,

S[ eeo recomb. (T Bthree-body recomb() v 4dv

SNfe~) (T3 ) ,- e6 '" 1 ' N (

0 [EGv P -I exp VI)dv - Ne(r)4) m-57v e( )

N E(T) 1 (v) v(vj -- exp ujmvA)ddv

2wm Z S"[BTBR(Ta. _ BBR ] v4d

0 u Iv ý' W G Wf - A jE (W) dwdvdu

*6Te6 T2 N 0(T) N OTC) .ýo-j ( -ý ý' W j(W) JE (W) .
J - -O I
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Since only steady-state conditions are to be considered, the term d/dt (3/2 WT N
will equal zero and the energy balance equation becomes:

N~(T*. 2 ~ W J~8l\~r~(WiJ)

8kT i2
a XFF- 2W.N~f)(.§-0) Z~ exp --!I(wa)

+ Ns(mere e Z Njt oW exp pc o in h(pas

- +(T ) (Z ) - We) )

2m ~6 -~ N(Te) ' Ner) -w ei Sj

3m N (r sir ZNjWTex 1  w

3 NTT.) k(r) + 3

(EFF en eF)Fion EFF

!3
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2 •/'5" l/2  ENa (kv5 exp Ve2) dv

rion) ~ - eee(k e)
EFF

N, refers to the concentration of the jth neutral constituent. Wij refers to the torn -

zation potential of the jth neutral constituent (Table 2)

2ra . 0. 876 X 10- 1 6 cm
2

M is the averaged ionic mass = 24 amu

Gj(Te) is the fractional energy loss of an electron in collision with the jth neutral

constituent (Table 1)

'EFP{Te~l 3%r-W .0 2!kT " -
(EFr)j 'IT lae~ ~ kkeI

N1 refers to the concentration of the tth molecular ionic constituent (NO+, 0'. N')

as a function of electron temperature.

(N)(O)5X0 T /2exp(-55. 700/T)+(NO) (-m-•'e) exp (-• ) (wao) Ne

3 X l0" Te-3 / Ne'Te)

t-N)(N)[ 9XIO" 1T 1T- /(+1.3Xl0-4T+3.3Xl0-8T2_2 . r 12 T2 3) exp(-67, 3001T))

+ (N 2) - klmre ) 1/2 exp (- - ) (1a5) 7' N} 2 N

3 X 10" -312 Nef'e)

O)(O)( 3.2X10" 1 1 T- 112(I+7.5Xl0- 5 T+2.2XI- 8 T2 ) . exp(-80, 100/T)J
kTI 1/2 e 25 (

(0) + 
) % e

2 X 103 T -312 Nef (e)
e
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Nk refers to the concentration of the kth atomic ionic constituent (OC, N÷) as a

function of electron temperature.

8kT\1/
2

(X)(O)4.62XI0" 2T l2exp(-313, 000/fT)+(O)I -I-- exp(--136)(Wao) N

•.T e O T in -14.5 2

(X')(N48X)Te 'ex(-33005 2.) +N)ý2 ý exp(-Rr.~ (X&)N

(6Te.)(X4r.± (W'a2 2 (W)dwdvduds.
o) vJEF

For a given value of the mean-square electromagnetic field (E2 ), the electron

temperature at a particular point in the plasma may be determined by solving the

energy balance equation [Eq. (75)) for (.e). All of the parameters which appear in

the energy balance equation are capable of being expressed as functions of electron

temperature in analytic form, except the terms (Yen)EFF. G C(Te), and the energy

loss of the electron gas associated with three-body recombination. However these

terms are known or may be evaluated in graphical form as functions of electron

temperature. Then, it is always possible to construct a relatively simple analytic

expression to fit the known graphical form of these functions. This permits the

energy balance equation to be solved for the electron temperature once the intensity

of the electromagnetic field is fixed. When the electron temperature has been

determined, the electron density may be computed from Eq. (72). As soon as the

electron temperature and density have been determined, the dielectric constant (K)

for this particular point in the plasma may be found by using Eq. (67). Finally, on

the basis of the model of a plane-layered plasma medium, the electromagnetic field

distribution in the nonlinear plasma slab may be computed step-by-step by utilizing

the energy balance Eq. (75), the expression (72) for the electron density, and ex-

pression (67) for the dielectric constant in conjunction with Maxwell's equations

expressed in the form of difference equations.

2.4 Heat Transport Through the Electron Gas Due to

Conduction and Particle Diffuhion

The various energy loss processes of the electron gas due to heat conduction

and particle diffusion have been carefully investigated by Anderson and Goldstein. 9 ' 4 1

These investigation$ were devoted mainly to the study of cross modulation
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(Luxembourg) effects in the afterglow of pulsed gaseous discharge plasmas. Elec-

tron-neutral collision frequency changes are produced by heating the plasma in the

afterglow through the application of a heating microwave pulse. These electron col-

lision frequency changes are observed by the variations in attenuation they produce

on a second or twanted' probing electromagnetic wave. Anderson and Goldstein 9

properly note that an energy balance equation for a particular region of the electron

gas must include terms which account for energy loss due to heat transport through

(1) electron-electron collisions (Spitzer and Harm10 coefficient), (2) electron-neutral

collisions, and (3) particle diffusion. Hence, in addition to the enumerated electron

gas energy gain and loss terms which account for energy exchange between the

electromagnetic field, the electron gas, and the neutral and ion gas [Eq. (75)] ,

energy transport from one part of the electron gas to another due to gradients in

electron temperature and electron density must also be examined.

Anderson and Goldstein 9 have given an explicit expression for the heat transfer

coefficient due to electron-neutral and electron-ion collisions which was first derived

by Gould:4 7

64 K2 TeNe

K 64 O e Ne (76)eN - 9 iM VEFF

where P EFF is given by Eq. (2) and to(v) = Z•eN + Pion' The heat conductivity co-

efficient due to electron-electron collisions (Kee) is larger than KeN because the

interelectron collision frequency is high and the Coulomb forces have a long range.

Spitzer and HarmI0 have derived an expression for the heat conduction coefficient

for the case of relatively small temperature gradients in a plasma:

20 m 2kc 5  (2. 3/2

K ee 3 e 4 In (qc 2 ) 8T (77)

where c O (3kTe/m)/ , In(q c 2) ,6 when Ne 10 1 2 /cm 3

0T 0. 225 Te = 30000K

Finally, heat transport may occur due to the exiltence of electron density gradients

in the plasma. This term assumes the form:

64tk 2 T
9WM VE (78)

9WIEFF C
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It should be remembered that there will be considerable heat transport at equi-

librium across the sharp density and temperature gradients which exist at the shock

front and at the boundary layer. This heat flow will proceed, of course, even in

the absence of an electromagnetic wave. This heat flow is of no consequence in so far

as the determination of the steady state electron temperature in the presence of the

electromagnetic field is concerned, because it is only those density and temperature

gradients estab]ished by the electromagnetic field over and above the gradients -which

had originally existed at equilibrium which will be responsible for loss at a particular

point in the plasma of the heat deposited by the electromagneti14~ld. These con-

siderations lead to heat transport terms which may be written:

(1) Flow of heat deposited by electromagnetic wave due to electron-neutral and

electron-ion collisions

64k2T N e(Te) V2 64k 2 TN (T)_ 2
9Wm V EFF(T) 9Win VEFF(T)

(2) Flow of heat deposited by electromagnetic wave due to electron-electron

collisions

Kee(Te) V2Te - Kee () V 2T

(3) Flow of heat deposited by electromagnetic wave due to density gradients

64k 2T 64k 2 T

SYEFFe V--e e 9wm P EFFe(T5 V'e"

The nonlinear reflection and transmission coefficients for a plane wave incident

at an arbitrary angle upon a plane-layered inhomogeneous plasma slab having the

characteristics of the re-entry nheath may be computed by determining the electro-

magnetic field distribution in the slab by integrating Maxwell's equations by a step-

by-step procedure. The step-by-step numerical integration of the field equations

entails the solution of an energy balance equation at each step. The most general

form for the energy balance equation at an arbitrary point in the plasma slab in-

cludes the following terms:

Energy deposited by] FEnergy gain of electron-]
e. m. field in plasma> + )gas due to new particles

ohmic heating j created by electron-
Lneutral impact I
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Energy loss of electron gas] ]Energy loss of electron!
ue to dissociative re- + gas due to three-body +

combination i Irecombination JJEnergy loss due to elastic - VEnergy transport duel
electron-neutral and electron- + ýto electron-neutral +
ion collisions and inelastic I and electron-ion
electron-neutral collisions ,Collisions

such as collisions which excite
rotational, vibrational, and I
optical levels and ionizing

Lcollisions J
FEnergy transport duel
to electron-electron > + -Energy transport due

Lcollisions 'to particle diffusion 4

If the last three energy transport terms in the above equation are negligible

compared to the terms that represent heat flow between the electron gas and neutral

gas, then the fact that the neutral gas constitutes an infinite heat reservoir implies

that there is no coupling of energy between the different layers of the plane-layered

medium. In spite of the fact that the heat transport coefficients may be large (espe-

cially the heat conductivity coefficient due to electron-electron collisions), if the

electron temperature gradients established by the electromagnetic field are not

drastically different from the gradients which existed in the absence of the field,

then the steady-state electron temperature within an arbitrary layer of the plane-

layered medium will not be a function of the temperature at adjacent points. Rather,

the electron temperature, determined from the energy balance Eq. (75), will depend

solely upon the rate of heat flow into the electron gas due to ohmic heating and the

heat flow out of the electron gas to the neutral and ion gas through the various elas-

tic and inelastic collision processes.

It should be emphasized that the effects of heat flow from the electron gas

through the boundary layer to the vehicle's surface have been entirely neglected in

the present analysis. Since most of the streamtube approximations (Lin and Teare,4 8

Rotman and Meltz I I) neglect diffusion from streamtube to streamtube (constant

enthalpy along a streamtube) in the process of calculating electron density for equi-

librium and nonequilibrium flow regimes, the standard techniques for computing

electron density profiles about hypersonic re-entry vehicles contain no inherent

mechanism which can account for heat transport across the ionized layer. Bond3 4 has

investigated the approach to equilibrium ionization in argon shocks. His analysis

leads to the prediction of charge separation across the shock front due to the dif-

ference in mobilities of positive ions and electrons. The electron density gradient

was responsible for the electron diffusion. This effect will also be neglected in

this report. In addition, for the well-defined shock fronts characteristic of blunt-
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nosed re-entry vehicles at 200, 000 It traveling at 18. 000 i 'sec, It will be assumed
that the gradients of electron temperature and electron density in the boundary layer

and at the shock front will be so steep compared to a wavelength (3 cm for X-band)
that they may be represented as plane interfaces. By examining the heat transport

coefficients represented by Eqs. (76). (77), (78), together with the electron tempera-

ture and electron density gradients usually encountered behind the shock of a blunt-
nosed re-entry vehicle at 200, 000 ft traveling at 18, 000 ft/sec (see Figures 18, 19,
and 20 in the report by Rotman and Meltz I), it is easily seen that the largest heat

transport term is given by Kee(Te) V2Te - Kee(T)V 2T, representing heat conduc-
tivity due to electron-electron collisions. Assuming that the electron temperature
and electron density gradients establishee by the electromagnetic field are not

greater than tan times the corresponding gradients that prevailed in the absence of
the field, it may be demonstrated that the largest heat transport term corresponding
to the greatest change in temperature gradient is at least two orders of magnitude
less than the term representing heat loss of the electron gas through elastic and

inelastic collisions.
The orders of magnitude of these quantities are listed below:

Ne . 1018 elec/m3

Te a 104 OK

T - 5000*K

V2T < 106 *K/m
2

Kee(Te) P4 10"2 joules/m 2 /sec/*K/m

GEFF '1-

VEFF 109 coll/sec

Kee(Te) V2Te . Kee (T)V2T . 104 joules/sec - m 3

6 33/2 GEFF VEFF Ne k(Te-T) m 106 joules/sec - m

The effects of heat conduction may be taken into account as a second order
correction to the electron density and temperature profile across the layer of ionized

gas. The procedure involves an iterative technique to be described in Section 5.
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2. 5 Diffusion Effects

It should be noted that no mass motion of the plasma is assumed in the analysis.

This is essentially the result of the fact that the plane wave, which is incident upon

the plasma slab, has an infinite extent. Hence there is no flow of plasma out of a

finite region over which the ohmic heating occurs. The electrons which" are created

on the spot by the induced chanqes in the reaction rates are assumed not to diffuse

across the layer of ionized gas. This is a very good assumption since, within the

layer of ionized gas, strong electrostatic restoring forces will severely inhibit the

flow of electrons out of the region in which they were created. Diffusion is charac-

terized by strong coupling between electron and ion motions (ambipolar), since the

Debys length I D in much less than the shock layer thickness. The positive ion motion

is completely determined by the structure of the flow field of the neutral gas. The

Debye length for electron densities of 1012 elec/cm3 and electron temperatures of

10, 0009K is about 10"3cm, or less than 10-4 times the shock thickness. The condi-

tions for ambipolar diffusion are satisfied, which implies that there will be a space

charge sheath of electrons at the boundaries of the plasma slab (shock front and

boundary layer). It will be assumed that this electron layer buildup at the boundaries

has a negligible effect on the microwave transmission characteristics of the re-entry

plasma sheath.

3. KINETICS OF 'H TEMPERATURE AM IN THE

PRESENCE OF AN ELECTROMAGNETIC FIELD

There have been some efforts devoted to the calculation of enhanced ionization

of the re-entry plasma sheath under the influence of intense microwave radiation.

King and Gray,81 King 82 and Sodha3 have computed the enhanced degree of ioniza-

tion of the plasma sheath under the influence of high-power electromagnetic radia-

tion on the basis of the Saha equation. The Saha equation relates the electron density

in a plasma at the (j + 1)h stage of ionization to the temperature, partition function,

and ionization potential of the jth stage of ionization. The usual form of Saha's

equation (Bachynski et al. 38) applies only to the case of thermodynamic equilibrium,

and is derived under the assumption that the distribution function for particle energies

is Maxwellian and that the electron temperature equals the gas temperature. Dewan4

has generalized the Saha equation to include any steady-state equilibrium situation

in a plasma. Dewan demonstrates that the steady-state equilibrium condition implies

that the rate of collision and radiation ionization processes for a given stage of iord-

zation must equal the rate of collision and radiative recombination processes for

that stage. This leads to an expression relating the ion densities to the radiation
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and particle energy distribution functions. Dewan8 4 has specifically pointed out that

attempts to apply the usual form of the Saha equation to physical situations where

thermodynamic equilibrium does not pertain can lead to totally erroneous results.

Dewan's approach, which ignores collisions between heavy particles, may be applied

to a multicomponent plasma when charge exchange is negligible. For the situation

considered in the present analysis, where the plasma is transparent and ionization

due to recombination radiation is negligible, Dewan's approach reduces to the steady-

state particle conservation equation obtained by taking the zero-order moment of the

Boltzmann equation. An accurate picture of microwave-enhanced ionization of the

plasma sheath may be obtained only by studying the numerous particle-particle and

field particle interactions. Such a detailed study will then reveal the relative im-

portance of the competing ionization processes.

The complete description of the kinetics of the appropriate collisional processes

and the kinetics of chemical reactions occurring in a multicomponent plasma, such

as shock-heated air, is an exceedingly difficult problem. The complexity is due in

part to the simultaneous occurrence of translational, rotational, and vibrational

relaxation behind the shock front, vibrational and radiative excitations, dissociation

and ionization. When an electromagnetic field of high intensity is impressed upon

an ionized flow field, the rates of reaction of many of these processes will be changed.

Nevertheless the problem is not intractable, primarily because many of these proc-

esses can be assumed to occur independently of the others to a high degree of ac-

curacy. Translational and rotational equilibrium of N 2 and 02 are achieved within

a distance of about one upstream mean free path behind a normal shock in air (0 1

0. 05 cm at an altitude of about 200, 000 feet). The computations of Lin and Teare4

demonstrate that translational/vibrational equilibrium is established at a distance

of about 100 upstream mean free paths. The processes of vibrational relaxation
and dissociation cannot be uncoupled, because molecules in excited vibrational states

dissociate more readily than unexcited ones. 4 9 Lin and Teare's 4 investigations of

the various competing ionization processes behind the shock front show that the

relative importance of these processes follows the order:

(1) Atom-atom imlpact

(2) Photoionization

(3) Electron impact on neutrals

(4) Molecule-molecule and atom-molecule impact.

This order is preserved for most of the region behind an air shock at 0. 02 mm Hg

(200, 000 ft) at a velocity of about 20, 000 ft/sec, although as UAn and Teare point

out, the rapid initial rates of change in temperature and chemical composition be-

hind the shock front can cause a shift in the relative order of importance of the

competing ionization processes. Since atom-atom impact is the dominant electron

production mechanism, the rate of production of electrons behind the shock depends
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upon the translational/vibrational equilibrium and the degree of dissociation.

IUn and Teare consider the following processes to be the chief chemical reac-

tions for high temperature air:

(1) 0 2 +X+5.1 ev -0+0+X

(2) N2 +X+ 9.8ev--NN+N+X

(3) NO+ X+ 6.5 ev-N+0+ X

(79)

(4) O+N 2 + 3.3ev -NO+ N

(5) N+O2 - 1.4 ev- NO+O

(6) N2+ 2+ 1.9 ev- NO+ NO

Since the degree of ionization for shocks up to 30, 000 ft!sec is always small (less

than I per cent), the electron production and recombination processes will not af-

fect any of the neutral reactions (translational-vibrational equilibration and dis-

sociation). Hence Lin and Teare were able to compute the vibrational and transla-

tional temperatures and the particle densities as a function of distance behind a one-

dimensional shock by solving the chemical rate Eq. (79) simultaneously with the

vibrational energy relaxation equations for 02 and N2 together with the mass, mo-

mentum, and energy conservation equations. A knowledge of the reaction rate co-

efficients for the numerous electron production processes enable them to compute

the electron and ion densities as a function of distance behind the shock front.

If a high-power electromagnetic wave is impressed upon the ionized flow field.

the translational-vibrational equilibration process and the dissociation reactions

(79) will not be influenced. This is due essentially to what Lin and Teare term

'the one-way coupling' between the dissociation process and the ionization processes.

Since the fractional energy loss of an electron per collision with a neutral (G) is

always less than 10i2 even up to electron temperatures of 20, OOOK and the degree

of ionization is 0. 1 per cent or less, the electron gas does not affect the energy

balance or the reaction rates of the atomic and molecular processes of the neutral

constituents. Only the ionization and electron recombination process will be affected

by the presence of the high-power electromagnetic field. For example an intense

microwave field will alter the relative importance of the competing ionization proc-

esses by increasing the electron temperature so that ionization by electron impact

on neutrals will become more important than photoionization, and even as important

or more important than atom-atom collisions. This would be most pronounced at
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least ten upstream mean free paths behind the shock front where the electron density

is built up to an appreciable level (see Figure 13, Lin and Teare 4). One important

point that should be emphasized is that, in the present analysis, a basic considera-

tion rests upon the assumption that the electron gas is in thermal equilibrium with

the neutral gas in the absence of an electromagnetic field. This assumption is

almost always made in computations of the electron density profiles behind a shock

front (Lin and Teare, 4 Rotman and Meltz, 1I and Bortner50). Petschek and Byron5 1

and Bond52 have investigated the onset of ionization and the approach to equilibrium

in argon shocks. Here the dominant electron production mechanism appears to be

electron-neutral impact. It was found that during the approach to equilibrium, the

electron temperature is less than the gas temperature. The distance over which

this equilibration takes place behind a shock front in air may be estimated in the

following manner. The fraction of the average energy transferred between an elec-

tron and neutral (G) per collision is of the order 10i 2 . Hence, in about 100 elec-

tron-neutral mean free paths the electrons should be in equilibrium with the neutral

particles. For a 5000*K shock corresponding to a blunt-nosed re-entry vehicle at

200, 000 ft traveling at 20,000 ft/sec, this distance would extend approximately 1

cm behind the shock front. Since this distance is short compared to a wavelength

(3 cm at X-band), the representation of the gradients and discontinuities at the

shock front by plane interfaces is a good approximation. This assumption is better
justified at 100, 000 feet.

The various ionization processes which may occur behind a shock in air include:

(1) Ionization by atom-atom, atom-molecule, and molecule-molecule collisions

(2) Photoionization

(3) Electron impact on neutrals and ions.

Also, charge exchange can influence the total electron density because electron-ion

recombination is specie dependent. Electron attachment to neutrals is another pos-

sible loss mechanism, because a heavy negative ion has little influence on the micro-

wave conductivity of the plasma.

3. 1 Neutral - Neutral Impact

Perhaps the most surprising result of IAn and Teare' s study of the ionization

processes behind an air shock is the fact that atom-atom impact is the dominant

electron production mechanism for shock velocities up to about 30, 000 ft /second.

This is an unexpected result, for studies of ionization processes in argon shocks

(Petachek and Byron51 and Bond 34) indicated that electron-atom impact was the

dominant mechanism. The minimum activation energy for producing ionization by

atom-atom impact corresponds to the reaction:

N+O+ 2.8 ev-- NO++ e.
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The concentration of atomic species will not reach appreciable levels until the dis-

sociation of 02 and N2 is fairly complete. For example, for a shock corresponding

to an altitude of 200, 000 ft at a velocity of 20, 000 ft/sec, dissociation of 02 and N 2

have attained 75 per cent and 50 per cent of their respective final equilibrium level

at a distance of ten mean free paths behind the shock front. At this distance the

translational temperature of the gas particles has dropped to about I ev. In spite

of activation energies which are considerably greater than 1 ev, ionization by atom-

atom impact is an important process because of the relatively large velocity-

dependent cross sections. The cross sections are large because of the crossing of

the potential energy curves representing the interaction potential of the atomic

system before and after the collision. This cross section may be determined (see

Bates and Massey 46) by considering the fact that there is a relatively large proba-

bility for a transition to occur between the initial and final states of the atomic

system at the point where their respective potential energy curves cross. This

probability is related to the eigenfunctions of the quasi-molecule formed by the col-

liding systems, the Hamiltonian of the colliding system, and the internuclear dis-

tance at which the curve crossing occurs (Landau-Zener formula6 3 ' 64).

IUn and Teare4 have considered the following ionization processes due to

neutral-neutral impact:

(1) N+O+ 2.8 ev-- NO++ e

(2) N+N+ 5.8ev-N++e

(3) 0 + 0 + 6.9 ev - 0 + e
2

(4) X+O+ 13.6 ev.-"X+O++ e

(5) X+N+ 14.6 ev-.XX+ N++ e

(6) N+ 2 +6.5ev-NO + e

(7) 0 +NO + 7.9 ev-- NO+ + e

(8) N + NO + 7.9 ev - N2 0+ + e (80)

(9) X+ NO+ 9.3 ev-'X+NO++ e

(10) 0+N 2 + 11.2 ev-- N 2O+e

(11) 0+0 2 + 11. 7 ev - 0 ++e

(12) X+0 2 + 12.1 ev--X+0++e

(13) X+N 2 + 15.6 ev"-X+N++e

(14) N2 +0 2 + 11.2 ev"- NO+ NO+ e
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By examining the rates reported in the literature, takcn in conjunction with theoreti-

cal considerations on the potential curve crossing of atomic systems and the equi-

librium relationship, Lin and Teare have selected values for most of the forward

and backward rates of the neutral-neutral impact ionization reactions (80). By and

large, the values chosen for these rates appear to be reasonable, except for reac-

tions (1), (2), and (3) of Eq. (80). The temperature dependence of T-3/2 selectede
for the dissociative recombination rates cor responding to the backward reactions

(1), (2), and (3) requires that the velocity dependent cross section assume a physi-

cally unrealistic form. Hence, in the present analysis, the rate for the forward

reaction (1) is determined by making a least-squares fit of the functional form

AT"1/2 exp (-B/T) to the experimental data of Lin 4 5 (see Figure 5, Lin and Teare 4).

This procedure is described in detail in Section 2. 3. 2. The backward rate for reac-

tion (1) is obtained from the equilibrium relationship The backward rates for the

dissociative reactions 1, 2, and 3 are assumed equal. Then, the forward rate con-

stants for the associative ionization reactions 2 and 3 were obtained through the

equilibrium relationship.

In the present investigation, atom-molecule and molecule-molecule impact

ionization processes are neglected (except reactions 4 and 5). This is justified on

the basis of LAn and Teare's estimations of the specific ionization rates for each of

the various ionizing processes. The specific ionization rate is defined as the abso-

lute value of the time rate of change of the normalized electron density multiplied

by the quantity (Y I/Ua), where

11 . upstream mean free path = 0. 05 cm at an altitude of 200, 000 ft

Us 8- shock velocity.

Figure Bb from the report of Lin and Teare 4 indicates that for a shock at

200,000 ft traveling at 20, 000 ft/sec, atom-molecule and molecule-molecule impact

ionization processes are quite negligible compared with ionization by atom-atom

impact for most of the region behind the shock front. Consequently, in this report,

only the ionization processes due to neutral-neutral impact corresponding to reac-

tions (1), (2), (3), (4), and (5) of Eq. (8n) will be considered. The reaction rate

coefficients for the forward reactions (4) and (5) are taken from the estimates made

by means of the collision theory used by Bortner. 3 9 The three-body recombination

rates for the reverse reactions (4) and (5) are based upon the Thomson theory3 6

generalized to the case of a multicomponent plasma in which the electron tempera-

ture is not equal to the gas temperature. In conclusion it might be mentioned that

in addition to the forward reactions (4) and (5), both Bortner 3 9 and Atallah 4 0 have

estimated that the following reactions are capable of producing e and N+ at quite

a rapid rate:
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(1) N+ NO-0+ + N2+ e
(81)

(2) O+NO N+ +O2+ e

However, Lin and Teare have neglected these reactions, and since reliable rate
constants for these reactions are not available, they will be neglected in this report.

3.2 Photolonization

The rate at which electrons are produced per unit volume for a particular fluid

element behind a shock due to photoionization depends upon the number densities of

the atomic and molecular species, their photoionization cross sections, and the

photon number density. The far ultraviolet appears to be the spectral region which

is most effective in producing photolonization of N2 , 02, and NO. It is only through
a consideration of excitation, emission, and radiative transport phenomena that the

spectral photon density for a particular fluid element may be determined. This

difficult problem has not been solved by Lin and Teare. 4 Instead a somewhat crude

estimate has been made of the electron production rate due to photoionization. On

the basis of measurements made by Camm et al.,53 Hammerling5 4 has deduced that

the major contribution to the far ultraviolet radiation emanating from an air shock

may be attributed to the b' ' E+ - X '2;-+ transition of N
u g4 f 2

This fact has enabled Lin and Teare to obtain an expression for the total in-
tensity of ultraviolet radiation per unit area emanating from the shock. Photoioni-

zation cross sections of N 0 and NO have been taken from the data of Weissler
55 256 2

et al., and Wainfan et al. The energy of the photons corresponding to the
b' 1Z +-- X I E-+transition of N2 (12. 9 ev) is such that this ultraviolet radiation is

u g
capable of ionizing only the molecules 02 and NO. These facts lead to the following

approximate expression for electron production due to photoionization (Lin and Teare).

dN ao2 [((02) + (NO)] MN L exp(-E* IkT*)
dt 8 (Tr + Te)

where

T r ' radiative life time of upper electronic state of N2

- 4 X 10-9 sec

e % collisional de-excitation time
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E = energy difference between two electronic states of N 2

= 12.9 ev

L - effective length of a particular fluid element

T = an effective temperature that determines the population of the
electronic states of N 2 .

By using Eq. (82), Lin and Teare4 were able to illustrate the effect of photo-

ionization on the electron density profile behind an air shock corresponding to a

velocity of about 20, 000 ft/sec at an altitude of 200, 000 feet. Figure 12 of the re-

port of .,n and Teare4 demonstrates that for distances behind the shock front greater

than one upstream mean free path, photoionization produces a negligible contribution

to the total electron density.

3.3 Ionization by Electron Impact

Since the Maxwellian distribution function has a long tail at high electron veloci-

ties, ionization produced by electron-neutral impact will become comparable with

associative ionization by atom-atom impact when the electron energy becomes equal

to or greater than about one-sixth the ionization potential of a neutral constituent

(NO has the lowest ionization potential: 9. 25 ev). Equation (68b) describes the rate

at which electrons are created by electron-neutral impact. The right-hand side of

Eq. (68b) has been obtained from the integral expression for impact ionization by

expanding the ionization cross section in powers of (e - Wi), and neglecting second-
1 m 2

1order terms in (kLTI/WI). Here, c is the electron energy, W, a ionization

potential of neutral constituent, and kT has been assumed to be much less than the

ionization potential (kT << Wi).

d N e 4 w Z Co v 3d • a4,r Z~. 0o ione 3dv

. I

VNei 8 ~)0 ZNj C exp~j~Neke A- 
-WmkTe( J- W ij

atXon, (Wij ) + (C - Witj) vilon, (W ij ) + .. ede
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= Ne B ZNj exp(:W i) Wj alon (Wij)

where aion (Wie = 0 and Wij oi on j (Wj) - wea". This result was first obtained by

Lin.5 7 The neutral constituents which will be considered in this analysis include:

N2 , 0 2 N, 0, and NO. The right-hand side of Eq. (68b) should give a fairly ac-

curate estimation of the electron production rate due to electron-neutral impact

for electron energies up to about 2 ev (20, 000%K).

It might be mentioned that the mechanism of electron production by electron

impact on neutrals in excited metastable electronic states has been neglected.

2.4 Effecta of Charge hboaue

The effects of charge exchange on the total electron density behind an air shock
will be manifested indirectly. The presence of an electromagnetic field in the

ionized flow field does not influence the rates of reaction for the charge transfer

processes, for the gas temperature is not changed. Charge exchange involves an

alteration of the relative concentrations of the various ionic species. The electron

density will be affected if the electron-ion recombination rates are different for

different species. The somewhat meagre experimental data on dissociative recom-

bination rates seem to indicate that the recombination coefficient is the same for

the species NO+, N+, and O. This implies that the electron density would be af-

fected only by charge exchange between the molecular and atomic species:

X*+Yz-yz++x . (83)

This type of reaction 083)ts termed asymmetrical nonresonant charge transfer, for

which the cross section at 2 ev for an Li.+ - Argon system it about 10" 2 0 cm 2

(Fogel et al. 58). Most nonresonant charge transfer processes are quite inefficient
at thermal energies. However there is another type of reaction, termed asym-
metrical resonant charge transfer, which may have a larger cross section at ther-

mal energies. An example of asymmetric resonant charge transfer has been sug-

gested by Omholt:5 9

+ 2 ,+ (2•u
O+(2D) +N (X +- v • 0) - o( 3 P) + N 2  v -A l) (84)

According to Bates and Lynn,6 0 it is improbable that this reaction has a large

cross section at thermal velocities.
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But, as Bates 6 1 has indicated, even though charge transfer is rather inefficient
at thermal energies, ion-atom interchange may be quite rapid:

X++ Xz-- XY++ z (85)

It is possible that the rate coefficient for ion-atom interchange may be as large as

10" 9 cm 3 /sec at thermal energies, provided the activation energy is small.

Hence, it would seem that charge exchange could influence the steady-state

electron density if the following typical chain of reactions occurred.

(a) O+N 2 - NO++ N
(86)

(b) NO++ e- N+O

The ion-atom interchange reaction (86a) could be fairly rapid, and the dissociative

recombination reaction (86b) proceeds much more rapidly than the three-body re-

combination of electrons with 04. Only the rate of the ion-atom interchange reac-

tion

0 ++0 - 0+ +0 (87)

has been repo."ed in the literature. Dickinson and Sayers65 have measured a rate

of 10- 1 1 cm 3 /sec at 300"K, which implies a cross section of about 2 X 10" 18 cm 2 .
4Lin and Teare have listed the following charge exchange reactions:

(1) N + N- N2 + N++ 1.0ev

(2) N +O-- N 2 +0++ 2.0 ev

(3) N ++ - N+0 + 3. 5 ev

(4) N++NO- N2 + NO++ 6.3 ev

(5) N+ + O.- N + + 0.9 ev

(6) N +o 2 -N+0o+ 2.5 ev

(7) N++NO-'N+NO+5.3ev

(8) O++O2-O+O++ 1.6 ev
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(9) O++NO--O+NO +4.4ev

(10) 0+ NO-O 2 +NO++ 2.8 ev

These reactions are all of the asymmetric nonresonant type, except the reverse

reaction (2), which may be of the asymmetric resonant type. Lin and Teare have

taken the cross section for all the exothermic reactions to equal 3 X 10 1 6 cm 2 .

This is a couple of orders of magnitude larger than the asymmetric nonresonant

charge transfer cross sections measured by Fogel et al.58 in U +- Argon systems
at 2 ev. However, Lin and Teare4 have investigated the effects of varying the exo-

thermic charge exchange cross section on the electron density and positive ion

density profiles behind an air shock at about 200, 000 ft, corresponding to a velocity

of 20, 000 ft/second. Figure 11 of the report by LIn and Teare 4 demonstrates that

changes in the charge transfer cross sections of factors of 100 in either direction

produce changes of about 10 per cent or less in the density profiles of electrons and

all positive ions except 02 . For distances between 1 and 100 upstream mean free

paths behind the shock front, the ionic specie 0+ exhibits about a 400 per cent change

in density when the charge exchange cross sections are varied by a factor of 100.

LUn and Teare4 have listed the following ion-atom interchange reactions and

charge rearrangement reactions:

(1) N +O-+NO+N+ - 2.2 ev2

(2) N2+O--NO+÷N+ 3.0 ev

(3) N 2 +Oi--NO+N+ -4.2ev

(4) N 2 +O+-- NO++N+ 1. 1 ev

(5) N + + 2 - NO + NO+ + 4.5 ev2 2 (89)

(6) N 2 +O-- NO+ NO++ 0. 9ev

(7) + +N-.NO+O+ -0.2 ev

(8) O++ N - NO++ 0 + 4.2 ev

(9) 02 + N+- NO + O + 2.3 ev

(10) 02 + N+ - NO+ + 0 + 6.7 ev

Although no experimental data on the rates of reactions (89) has been reported

in the literature, the ion-atom interchange reaction (87) has a measured cross
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section of about 10" 1 8 cm 2 at 0. 03 ev. This result may be interpreted to imply that

the ion-atom interchange processes [ Eq. (89)] have a cross section which is one or

perhaps two orders of magnitude greater than the cross section for asymmetric non-

resonant charge transfer [ Eq. (88)]. Lin and Teare 4 have taken the cross section

for the exothermic charge rearrangement reactions (89) to be equal to about ra 2

The cross sections for the reverse reactions (88) and (89) were computed from the

equilibrium constant using the principle of detailed balancing.

Because of: (1) the apparent insensitivity of the electron density and most of

the ion specie densities to changes in the charge exchange rates, (2) the extreme

paucity of experimental data and the uncertainty in the charge exchange rates, and

(3) the enormous increase in complexity of the expressions for electron and ion

densities, the effect of charge exchange will not be included in the present analysis.

However, if more sufficient experimental data on charge exchange reactions become

available, then Eq. (7 ) for the rate of production of each ion species should be modi-

fied to include these effects:

d(NO+)
dkfT0. 1 (N)(O) 4 kf 7 0 6 (NO)N - k l(Ne+)(N

f~o. 1f70. 6 e -r70.1 e

"kf88. 4 (N2I(O - kr 8 8 .4 (N2)(NO+) + kf88. 7 (N+)(NO)

k 8 8 .7 (N)(NO+) + k 8'. (O+)(NO) - k (O)(NO+
r~g.7 f8. 9r88. 9

+ kf8 8 . 10 (O2)(NO) - kr88. 10 2 + kf8 9 . 2 (N)10)

(90)
- kr 8 9. 2 (N)(NO+) + kf8 9. 4 (N2)(O+) - kr 8 9 , 4(N)(NO

+ kf8 9  N (N0)(O 2 ) - kr8 9  (NO(NO+) + kf 9 . 6 (O+)(N 2 )

- k 8 9 6 (NO)(NO+) + kf89.8 (O+)(N) - kr8 9 s(O)(NO)

+ kf89. 10 (N+)(02) - kr 8 9 . 10 (O)(NO )

The expressions for the rate of production of the ionic species N2. 0 , and N In-

cluding the effects of charge exchange are as complex as the equation for NO [ Eq.

(90)1 . They may be obtained from inspection of Eqs. (70), (88), and (89).

3.5 Effects of Electron Attachment

There are primarily four types of electron attachment processes:
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(1) Radiative attachment

e + x - x + ht*

(2) Three-body attachment

e+x+y- x +y

(3) Dielectronic attachment

e + x - (x')*

(4) Dissociative attachment

e+ xy--x +y

Of the various constituents of high-temperature air, 0, 02' and NO have the largest

electron affinity (Massey6 6). The electron affinity of 0 is 1. 465 ev; of 02. 0. 43 ev;

of NO, small but positive; of N2 , negative; of N, negative. In air at thermal ener-

gies of about 0. 5 ev corresponding to translational temperatures of about 50006K,

none of these negative ions will be stable. Hence the effects of electron attachment

will be neglected.

4. THE FIELD DMTRMU7ION AND THE REFLECTION AND
TRANSHM•N COEFFICIENTS OF AN
DIHOMOGENEOUS, NONLINEAR PLASMA SLAB

The previous sections of this report have been devoted to a detailed description
of the method for computing changes in the electron density, electron collision fre-

quency, and electron temperature which have been brought about by the presence of

a high-power electromagnetic wave in the ionized flow field surrounding a hypersonic

re-entry vehicle. The analysis of the transmission characteristics of the re-entry

sheath under the influence of high-intensity microwave radiation is based upon the

model of a plane monochromatic wave incident at an arbitrary angle upon a non-

uniform multicomponent plasma slab. Part of the complexity of the problem arises

from the fact that the reflection and transmission coefficients of the plasma slab

depend upon the conductivity of the ionized gas, which is a function of the electron

density and collision frequency. These parameters depend upon the electron tem-

perature distribution in the plasma slab. The electron temperature is determined,

in turn, by solving the energy balance equation which contains the local field as a
parameter. The technique developed for the computation of the transmission and

reflection coefficients of the plasma slab consists in replacing the layer by a stack

of homogeneous sheets. This model lends itself, in a natural way, to the application
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of step-by-step numerical integration of the field equations expressed in the form

of difference equations. By assuming a value for the amplitude of the transmitted

field, and taking backward differences through the slab, the coupled system of

equations which describe the conductivity, electron density, energy balance of the

electron gas, and the electromagnetic field distribution may all be solved simul-

taneously. This method is general enough to incorporate the inhomogeneities of

electron density and collision frequency into the analysis. The method is not

restricted to cases where the permittivity gradient is small compared to a wave-

length, such as the convenient WKB asymptotic solution. It is found that for the

case of a plane wave of arbitrary polarization, incident at an arbitrary angle upon

the slab, the wave may not be entirely uncoupled into two waves: one polarized

perpendicular and a second parallel to the plane of incidence. This is because the

dielectric constant for a point in the plasma slab is a function of the amplitude of

the total local field.

A homogeneous plasma slab does not constitute a physically realistic model for

problems concerned with the nonlinear interaction of microwave radiation with the

plasma sheath. This is because the microwave power absorbed by the plasma de-

pends critically on the ratio (w p1w). Klein et al.69 have shown that a maximum

transfer of energy between an electromagnetic field and plasma occurs at a point
just behind the plasma resonant density (Np = O2meo/e 2). This implies, of course,

that the interaction of the microwave field with an inhomogeneous plasma results in

a nonuniform deposition of energy.

Bloembergen and Pershan6 7 have already investigated a somewhat similar prob-

lem concerning the solution to Maxwell's equations at a plane interface between a

linear and nonlinear medium. However their analysis proceeds from a relationship

between the nonlinear atomic properties of a medium and a time dependent suscepti-

bility tensor. In the case of a plasma under the influence of high-power electro-

magnetic radiation, this corresponds to the situation when the relaxation time

(TEN = 1I/G') for energy transfer between the electron gas and neutral gas is much

less than the period of the impressed field (I"EN << T or w << GY). Then the electron

temperature will not reach a steady-state value independent of time. Rather, the

electron temperature will have a sinusoidal time dependence at the second harmonic

of the frequency of the impressed field (see Ginzburg and Gurevich8 ). The electron

density will also be time dependent, The characteristic time for electron density

variations will be a complicated function of the rates of electron production and

electron recombination. Molmud 6 8 has considered inducing time-dependent pertur-

bations of the electron density and collision frequency in the D-region of the iono-

sphere by utilizing high-powered ground-based radio transmitters. The perturbations

may be observed by the changes produced in the absorption of a second or wanted

wave. Here, photoionization, which is the dominant electron production mechanism,
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is assumed to proceed at a rate which is independent of the electron temperature.

The chief electron loss mechanism is the temperature sensitive process of attach-

ment to 02.

The time-dependent perturbation treatment of nonlinear media of Bloembergen

and Pershan67 predicts harmonic wave generation at the boundary between a linear

and nonlinear medium. A reflected second harmonic wave will propagate in the

linear medium in the same direction as the reflected fundamental wave, whereas

the transmitted harmonic will in general propagate in a direction different than the

transmitted fundamental. The matching of the field amplitudes at the boundary for

a wave incident at an arbitrary angle leads to generalizations of the usual Fresnel
67

formulas. The treatment of Bloembergen and Pershan is applicable to plane wave

transmission and reflection from magnetoactive plasma-vacuum interfaces for

incident waves whose frequency is such that w << G,. In the present analysis, only

waves whose frequency satisfies the condition w >> GP will be considered, so that

harmonic generation will not occur.

4. 1 The Field Equationa (MKS)

The propagation of electromagnetic waves in a nonlinear plasma are governed

by the usual equations of phenomenological electrodynamics, that is, Maxwell's
equations:

x = " po0 " -" "j o "

(91)
0 at + J-• c' 0 wEo + J

where the diamagnetic effects of the plasma have been ignored. The E and H fields

are assumed to be proportional to e+i~t. If there is no external magnetic field

present in the plasma, the macroscopic current density may be related to the electric

field through the scalar conductivity;

-= al (92)

For the nonlinear medium under consideration, the conductivity depends upon the

square of the electric field amplitude. Equation (65) is a general expression for the

scalar conductivity in terms of the basic plasma parameters such as electron-elec-

tron collision frequencies, the Maxwellian electron velocity distribution function,

and the electron density. It is more convenient to work with the complex dielectric
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constant of the plasma, K, defined in terms of the conductivity by Eq. (66). Max-
well's equations may be written in terms of the complex dielectric constant:

I x I - -.Jo5w

(93)

For the range of parameters of interest (w2 >> V2, W >> V ee), the approximate ex-
pression (67) for the dielectric constant is adequate.

4. 2 Wave Propagation in Nonlinear Inhomogeneous Media

4.2.1 A LINEAR, HOMOGENEOUS SEMI-INFINITE PLASMA

Graf and Bachynaki70 have treated the problem of plane wave reflection and
transmission from a plane interface between vacuum and a homogeneous plasma.
The presence of the electromagnetic field is assumed not to change the properties
of the plasma medium. The plasma is characterized by a complex dielectric co-
efficient:

K-Kr "JKi

The vector Helmholz equation which governs wave propagation in the plasma medium
is obtained by taking the curl of the first Eq. (93) and substituting curl it from the
second Eq. (93):

curl curl E grad div A - V2g

(94)
S"jwp curl f -k2 a

By utilizing the condition:

I - B co I - K2 - oK 2" + co 9 . V--R- 0 (95)

together with the fact that the plasma is uniform: V 0 = 0, Eq. (94) becomes:

V + k2 KP - 0 (96)

where ko . w/c.
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Figure I illustrates the geometry of the problem. Since the field vectors will not

vary as a function of x (parallel to the plane of incidence), and the phase velocity in
the y direction will be the same in both media, solutions of the wave Eq. (96) for

each component may be written:

Ei -Aiexp[PZ+jQZ - j ko sin0yl

where i - x, y, z.

Graf and Bachynski 7 0 have obtained expressions for the real and imaginary part of

the propagation constant in terms of the dielectric constant and the angle of incidence:

P =ko I I((Kr" sin 2 )2 + 2 1( sin2 0) 1/2

7 K'~ ~ ' i' (Krsn )
(97)

Q k kO [((Kr - sin 2 )2+ K2 } 2/2 + (Kr -sin
2 9)| 1M.

The surfaces of constant phase do not coincide with the surfaces of constant ampli-

tude in the plasma medium. The surfaces of constant amplitude are planes parallel
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to the interface, whereas the planes of constant phase are at an angle (tan- Ik sinG/Q)
with respect to the interface.

If Maxwell's Eq. (93) is written out in component form in Cartesian coordinates,

it is easily seen that Ex, H y and Hz are independent of Ey, Ez, and H . The first

set of field components corresponds to a wave with the electric vector perpendicular
to the plane of incidence and is termed the transverse electric mode (TE). The

second set of components corresponds to a wave with the electric vector in the plane

of incidence and is termed the transverse magnetic mode (TM). An incident wave

polarized at an arbitrary angle may be resolved into these two modes. For a linear

homogeneous medium, the propagation characteristics of one of these modes in un-

influenced by the presence of the other mode. However these two modes are not

uncoupled for a nonlinear medium, and are uncoupled only in special cases for

inhomogeneous media.

Graf and Bachynski70 have derived generalized Fresnel equations for each mode

of polarization by matching the tangential components of ' and A and the normal

component of B at the interface. Graf and Bachynski 7 0 have derived expressions

for the Poynting vector in the plasma for both modes of polarization. It is demon-

strated that for the TE mode the instantaneous Poynting vector changes magnitude

and direction during one cycle, so that the wave is not, in general, plane. The

average Poynting vector is perpendicular to the planes of constant phase. For the

TM mode, it is shown that, in general, neither the instantaneous nor the average

Poynting vector is perpendicular to the planes of constant phase. Only for the case

of a lossless plasma or normal incidence are the waves in the plasma plane.

For the case of a nonlinear plasma slab with a permittivity gradient perpen-

dicular to the plane interfaces, wave propagation may be considered by imagining

the medium to be composed of a stack of linear homogeneous plasma sheets. The

solutions of. the field equation for a particular sheet will then be representable in

the form:

Ei =Ai exp[PZ+JQZ- jk0 siney]

The essential point is that the real and imaginary parts of the propagation constant

(P + JQ) will depend upon the magnitude of the dielectric constant (K) at the point Z

in the plasma. The dielectric constant will depend both on the nature of the inhomo-

genieties and on the square of the local field amplitude.

4.2.2 EXACT SOLUTIONS OF THE WAVE EQUATION FOR A ONE-
DIMENSIONAL INHOMOGENEOUS LINEAR PLASMA MEDIUM

A rather small number of exact solutions of the wave equation have been obtained
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for normal incidence on an interface when the dielectric constant varies only in a

direction perpendicular to the plane interface. With reference to Figure 1, exact

solutions exist only when the dielectric constant K varies with Z in certain speci-

fied fashions. The solutions are usually expressible In terms of tabulated functions,

and are particularly useful when the geometric optics approximation VK/K << 21r/X

is not valid. The geometrical optics approximation is inappropriate when K O 0.

Ginzburg 1 7 has discussed the solutions of the wave equation for normal Incidence

when the dielectric coefficient has a variation in one direction. The form of the

dielectric constant and the solutions to the wave equation are as follows-

(1) A linear layer without absorption, K - I -Z/ZI, solutions in terms of

Bessel functions of one-third order, or Airy functions.

(2) An absorbing linear layer, K = I -Z/Z 1 - i(a + 0 Z/Z 1 ), solutions in terms

of Bessel functions of one-third order with complex arguments.

(3) A parabolic layer without absorption K a 1 - w 2 (2 - z 2 /Z2), where

W k is the plasma frequency corresponding to the maximum electron density and Zm
is the half-width of the layer, solutions in terms of Weber functions, or parabolic

cylindrical functions (see Whittaker and Watson7 4 ).
-2(4) A layer characterized by a dielectric constant of the form K = a(b + Z)"

solutions in terms of polynomials in Z.

(5) A layer characterized by a dielectric constant of the form K = a + b e YZ.

(0 + eYZ)" I + c e YZ( + eYZ)" 2 solutions in terms of hypergeometric functions (see

Ref. 74).

Pappert and Plato71 have treated the cases of a linear profile, a parabolic

profile, and a cosine profile. A cosine profile in dielectric constant leads to solu-

tions of the wave equation in the form of Mathieu functions. Taylor 7 2 has demon-
strated that the solutions to the wave equation may be represented in terms of

cylindrical Bessel functions for an exponential profile and for a profile varying as

Z"2. Buchsbaum7 3 has obtained solutions of the wave equation in the form of Hankel

functions for a dielectric constant of the form

K - K0 (1+ aZ)n

It should be mentioned that there exist cases where an exact solution to the

wave equation can be obtained for normal incidence and that these cases are capable

of being extended to arbitrary angles of incidence for the TE mode of polarization.

This is always true when an exact solution to the wave equation has been obtained

corresponding to a dielectric constant K(z), such that it contains an arbitrary con-

start that does not depend upon Z. The proof of this statement rests upon the follow-

ing three facts:
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(1) For the TE mode of polarization, ] V-"(Z) = 0, so that, by Eq. (95),

'A .0.
(2) The component of the phase velocity of the incident wave parallel to the

interface (ko0 sin 9) is the same as the component of the phase velocity of the trans-

mitted wave parallel to the interface.
(3) The formal structure of the wave Eq. (96)

koE 2 - sin 29) E = 0
dZ

is not changed for the TE mode as the angle of incidence (9) is varied.

4.2.3 APPROXIMATE METHODS FOR OBTAINING SOLUTIONS TO THE
WAVE EQUATION FOR A ONE-DIMENSIONAL INHOMOGENEOUS
LINEAR PLASMA MEDIUM

Most treatments of electromagnetic wave propagation in inhomogeneous media

assume that the variations of dielectric constant occur along only one coordinate

direction. Studies of electromagnetic wave transmission and reflection character-

istics from plane media whose dielectric constant varies in a direction perpendicular

to the plane interfaces have been conducted by Schelkunoff,75 Penico, 12 Stickler, 13

Richmond, 14 Albini and Jahn, 7 7 Ni~oll and Basu,78 and Brekhovskikh. 79 Klein

et al. 69 and Safran and Meltz have applied the WKB asymptotic approximation and

a numerical integration of the Riccati equation for the complex impedance of a di-

electric slab to the problem of computing the transmission characteristics of the

inhomogeneous re-entry plasma sheath. In problems involving propagation between

two media with differing dielectric constant, the surface at which the discontinuity

occurs usually may be represented as a plane, cylindrical, or spherical boundary.

A general problem would involve obtaining solutions to the wave Eq. (94) to compute

physical observables, such as phase shift, absorption coefficients, reflection and

transmission coefficients. Schelkunoff75 has pointed out that for the general case

of waves propagating in an inhomogeneous medium, such that the direction of propa-

gation coincides with the direction of the gradient of dielectric coefficient, it is not

always possible to interpret the solutions of the wave Eq. (94) as outgoing or incom-

ing disturbances. However. for the present analysis, in which a plane-layered

plasma slab it bounded on both sides by vacuum, this difficulty will not arise ex-

cept perhaps when the incident wave is polarized in the plane of incidence and the

dielectric constant K P 0. This would correspond to the physical situation where

plasma waves could be excited in the ionized medium.
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The general form of the Maxwell Eqs. (93) indicates that the electric field com-

ponents are coupled. These field components become uncoupled only for very spe-

cial coordinate geometries. Penico1 2 has investigated the uncoupling of the field

components for several orthogonal curvilinear coordinate systems. The choice of

coordinate system is usually dictated by the nature of the boundary surface when

more than one dielectric medium it involved. This facilitates the matching of the

field components at the boundary. Penico 1 2 has emphasized the fact that the usual

techniques for obtaining solutions to the wave Eq. (94) require that two of the three

unknown field co~nponents be eliminated from the equation, so that a scalar equation

for a single field component may be derived. Also, the operator V2 which appears

in Eq. (94) may be interpreted as the Laplacian only for Cartesian coordinates (see

Stratton,"7 6 p. 49). Penico 12 claims that the reduction of the wave Eq. (94) to a

scalar equation for a single field component is possible in general only when the

dielectric constant K is a function of one coordinate.

Consider the oblique incidence of a monochromatic plane wave on a plane-layered

medium which is inhomogeneous in a direction normal to the interface (Z-axis).

Outside the layer, for Z < 0 (see Figure 1), the incident wave may be written:

E - E0 exp[ -jk, (sin 9 y + cos .Z)J . (98)

Since the incident wave is indcpendent of the x-coordinate, both reflected and re-

fracted wave will be independent of the x-coordinate for a medium in which the

dielectric constant is independent of x. Using Gauss' law, Eq. (95) may be written

in Cartesian coordinates in the form:

82 E 82 E

82 E 82 EZ 2

E + E + ko ( K)- 0 99)

•y 8Z

x2  + !& K

ey 9Z2  0 1

The field components not only satisfy the wave Eq. (99) they must also satisfy Max-

well's Eq. (93), which assume the following form in Cartesian coordinates:
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OZ 8E

Z BE- - JI wH

BE

y =- j p wHZ (100)

8H 8HZ
.. Y._Z j e w oKEx
OZ By 0 K

OHx--O-jC 0 WKE y

Ox-- x j cO wKEZ

By examining Eq. (100), it may be clearly seen that the vector components Ey, Ez

Hx form one independent set; whereas the components Ex, Hy , and Hz form a second

independent set. The first set corresponds to the TM mode of polarization; the

second, the TE mode of polarization. An incident transverse electric mode will

excite only a TE mode in the plasma. Similarly an incident TM wave will excite

only a TM mode in the plasma slab. This is true for a nonlinear one-dimensional

inhomogeneous medium. Moreover for a linear inhomogeneous medium, the propa-

gation of the TE wave is completely independent of the presence of the TM wave, so

that the modes are entirely uncoupled. However, for a nonlinear medium, whether

it is inhomogeneous or not, the propagation characteristics of the TE wave depend

upon the TM mode, for the dielectric coefficient is a function of the square of the

total field amplitude.

The phase velocity of the electromagnetic wave in the y-direction (parallel to

the interface) is the same in vacuum as in the plasma slab, even when the medium

is nonlinear and inhomogeneous. This is merely a statement of Snell's law of

refraction, and may easily be proved by considering the nonlinear inhomogeneous

medium as the limiting case of a medium composed of a stack of linear homogeneous

layers:

ko mine =kSinOr

where
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k k -k -,Kko• ., k-k4
0

0 = angle of incidence and Or to the angle of refraction at the first interface. One
important consequence of Snell's Law is that:

•.Ei = - j kin mmE ko m n 0Ei

where i - x, y, or z. Another consequence is that the angle of incidence equals the

angle at which the transmitted wave emerges from the far face of the inhomogeneous

nonlinear slab.

Richmond 14 has set up the field equations in the form of difference equations so
that the field distribution in one-dimensional inhomogeneous slabs may be computed
using a step-by-step numerical integration technique. By assuming the value for
the amplitude of the transmitted wave on the source-free side of the slab, the field
distribution in the medium may be calculated by taking backward differences. For

the TE mode of polarization, Richmond14 has utilized the wave Eq. (99) for the x-
component of the electric field. To obtain the solution to the difference equation,
the field must be known at two points. The amplitude of the transmitted wave at the
source-free aid e of the slab, corresponding to the point Z - d, is assumed. The

field at the location of the first backward increment, corresponding to Z = d-h, is
obtained by making a Taylor series expansion of the field about the point z = d in
powers of the increment size h. The difference equation form of the wave Eq. (99)
then prescribes the field amplitude at the point z - d-2h in terms of the field ampli -
tudes at the points z a d and z - d-h. Each backward step corresponds to the numeri-

cal integration of the wave equation across a layer whose dielectric constant K(z)
is uniform over the step-size h. The boundary conditions for the field components

must be satisfied at each transition across a discontinuity in dielectric constant.
The matching of the field components at each boundary of the plane-layered medium
presents no difficulty for the TE mode, since the tangential components Ex and H
and the normal component Hz are all continuous across a discontinuity in dielectric
constant K. The treatment for the TM mode is somewhat different. Here there is
a component of the electric field Ez, which is normal to the plane interfaces. Since

the normal component of the electric displacement must be continuous across a

discontinuity in dielectric constant, the boundary condition for the D vector would
require that the condition

K(Z) EZ+ = K(Z_) Ez. (101)
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be satisfied at each step in the numerical integration, where the plus subscript re-
fers to the layer just to the right of the discontinuity and the minus subscript refers

to the layer at the left. In the case of a linear inhomogeneous medium, this added
difficulty may be circumvented by considering only the field component tangent to

the plane interfaces, E y. Once the field distribution for the tangential component
E is determined, there is information sufflcient to determine the total reflection

and transmission coefficients of the slab. This is because the angle of incidence

must equal the assumed angle of transmission. However, for a nonlinear medium,

the case of the TM mode of polarization presents special difficulties. It is impos-

sible to find the field distribution for the Ey component alone, because all the elec-

tric field components are coupled through the dielectric coefficient K, where K is a
function of all the components. For a nonlinear plane-layered medium, the step-by-

step numerical integration must be carried out for all the electric field components

simultaneously, with the condition of Eq. (101) imposed at each dielectric coefficient

discontinuity for the normal electric field component E . This involves an iteration

at each boundary, since the dielectric coefficient to the left of each discontinuity,

K(z_), is unknown. First, the value that K(z.) would have if the medium were linear

is assumed, and this determines E Z. The fields thus obtained are used to compute

a new value for K(z), and then a new value for E z is obtained from Eq. (101).

Convergence of the iterative procedure should be rapid since the nonlinear departures

from the linear case will be relatively small.

4.2.4 TECHNIQUE FOR COMPUTING THE FIELD DISTRIBUTION,
TRANSMISSION AND REFLECTION COEFFICIENTS OF A NONLINEAR
ONE-DIMENSIONAL INHOMOGENEOUS PLASMA SLAB

The procedure used to compute the field distribution in an inhomogeneous non-

linear plasma slab is similar to the method used by Richmond 1 4 for the case of

linear inhomogeneous media. A major modification involves the direct use of Max-
well's equations, Eq. (100), to find the field distribution, instead of working with the

wave Eq. (99). This facilitates the numerical Integration, for a Taylor series

expansion of the field amplitude does not have to be made in order that the numerical
integration be started.

Equation (100) may be written in dimensionless form:

8u

-+ j sin0 u5  -j vx

au x (102)

-JvJy
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sin 0 ux = z

(102)

++j sin0vz Ku.

Ov
x- =- jKuy

where

sin 0 vx -K uz

u = 4e E

vi = iJF H

S= koZ
0

Here the dielectric constant K is a function of the electron density Ne and effective

collision frequency Y EFF* For the present analysis the approximate expression

(67) for K is adequate. At each step in the numerical integration, the energy balance

equation, Eq. (75), must be solved for the electron temperature Te. This permits

the determination of the electron density from Eq. (72) and the effective collision

frequency from Eq. (2). The field amplitude squared, which appears in the ohmic

heating term of the energy balance Eq. (75), is the square of the total field:

E 2 . E 2 + E 2 + E 2

x y z

The solution is started by assuming values for the amplitude of the transmitted
(2 2 2+lI2 u-

field u, the angle of polarization 0 (tan 0 * (u2 + u z) x 1, and the angle of trans-

mission Q(0 - tan'Iuzuy1) at the source-free side of the slab z - d+, whered = slab

thickness and plus subscript refers to a location on the side of a dielectric constant

discontinuity furthest from the source. At a point just inside the plasma slab,

corresponding to z = d_, the tangential electric and magnetic fields ux, Uy, vx, Vy,
and the normal magnetic field vz have the same magnitude as the assumed values

at the point z - d+. If there is a normal component of electric field uz, its value at

a point just inside the slab (ud.) must be obtained by making successive approxima-

tions to the solution of Eq. (101),
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Udu d+d) Ud+) U d+

where the first approximation to K(d) may be taken as the value of the dielectric

constant for a linear medium. If there is no component of the electric field normal

to the interfaces (TE mode), there is no change in the value of the amplitude of any

of the field components as a discontinuity in dielectric constant is traversed. How-

ever, whether the mode is TE, TM, or mixed, the calculation of the dielectric con-

stant at the point z - d involves the solution of the energy balance Eq. (75) for the

electron temperature, the determination of the electron density from Eq. (72), and

the determination of the effective collision frequency from Eq. (2). Once a self-

consistent set of values have been obtained for the field components and dielectric

constant at the point z - d-, Maxwell's equations expressed in the form of difference

equations give a prescription for finding the fields at the point z - (d-h)+, where h

is the increment size used in the difference equation. The distance h corresponds

to a plane layer thickness over which the electron temperature, density, and col-

lision frequency are assumed to remain constant. The dimensionless form of Max-

well's equations, Eq. (102), expressed as difference equations are:

uy(r-h) - u (r) + jh [sin G - K

ux (v-h) * ux(r) - Jh vy(r)

Vz (7-h) = sin 0 ux(v-h) (103)

v y(-h) - v y(r) + jh (sin 0 - KI ux(r)

vx( 7-h) - vx(r) + JK uy(7)

Uz(r-h) = - sin 0 K"1 vx(,rh).

Equations (103) yield the values pf the field amplitudes at the point z 2 (d-h)+,

once the fields at the point s - d are known. All the field components at the point

z = (d-h)+ are equal to the fields at the point a - (d-h)_, except the normal component

of the electric field, us, which is again determined by obtaining a self-consistent set

of solutions to Eq. (101):

K(r-h). u( (r-h)" K(,r-h)+ u (r-h)+
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Eq. (67) for K(r-h)., the energy balance Eq. (75), the electron density Eq. (72),

and the Eq. (2) for effective collision frequency. If Maxwell's equations [ Eq. (103)]
are combined with the boundary condition for the normal electric-field component,

the results may be represented in the form:

u 0 -h) - Uylr) + jh[ sin 0 - (

K(r-h)+u z(7"-h)"- R F T u z(,r-h)+

* (7-h)+ si . - Vx(-h)

(104)
SX(tr-h) - v x(Tr) + j K Uy'r)

Ux(r-h) a Ux(1") - J h Vy(,")

Vz(v-h) - sin 9 ux(T-h)

vy(r-h) a vy(r") + jh[ sin2 0 - KI ux(T)

The difference equation for the normal component of the electric field is singular

when K - 0. This situation corresponds to the excitation of plasma waves in the
medium by the component of the electric field normal to the interface (TM mode).

If collisions are present the energy associated with these plasma waves will result
in heating of the plasma (see Ginsburg7 ).

The step-by-step numerical integration is performed until the point z - 0 is

reached, corresponding to the face of the slab upon which the plane wave is incident.

Once the entire field distribution has been obtained, the reflection and transmission

coefficients for each mode of polarization may be found immediately from the fol-
lowing relations:

Transverse Electric Mode:

sin 0 (q.incl + II%) - Hs(o) (105)

Cos 0( incl " I)" yo)
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IAHRI -H (o) cos 0 - H (o) sin S

T±- Ininc I -H.To- oo, 0 + HY•o) sin 0]

Transverse Magnetic Mode: (105)

sin 0 (IA inc I + 1%R') 1 EZ(o_)

Cosa (it inc' 2 ']R') 1 - Ey(o)

"=ERI Ez(o_) cos 0 + EY(o) sin 0"R1  iinc -[Et(o.) co, 9- EY(o) sin 01

IE sin 2 0 [E.2(d+) + E2()
9 [Incl [Ez(o.) cos 0 - Ey O) sin 0a

where

Iifi nl and Ifin cl

are the magnitudes of the incident magnetic and electric vectors. I I and II
are the magnitudes of the reflected magnetic and electric vectors, I X and ITI
are the magnitudes of the transmitted magnetic and electric vectors. RI and T1

refer to the reflection and transmission coefficients for the TE mode and R I I and
T I I refer to these quanitities for the TM mode. The angle S is the angle which was

assumed as the angle of transmission. It should be noted that the angle of trans-

mission must equal the angle of incidence.

In this analysis, calculations will be performed only for normal incidence. In

this case, Eq. (105) assumes an indeterminate form. For normal incidence there
is no distinction between the TE mode and the TM mode. The following relations

should be used for computing the reflection and transmission coefficients of a non-
linear slab for normal incidence:
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R •u1o) - vilo)u(ol + v(o)

(106)

Ein U (0 (3. 37 X 10 5 volta/m

ER u(o) (3.37X 105 )volts/m

The computations may be performed for several step sizes (h) to obtain an estimate
of the accuracy of the solution. Stickler 13 and Richmond 1 4 have discussed the de-

pendence of the accuracy of the solution on the increment size for the case of trans-

mission through plane-layered dielectric slabs.

5. CONCLtIMNI

The results of the computations for the reflection and transmission coefficients

of a nonlinear plasma slab which simulates the composition of high-temperature air

(5000K) will be made available in a future report. Order of magnitude estimates
reveal that power fluxes of the order 100 to 1000 watts/cm2 are capable of produc-

ing factors of four or five changes in electron temperature. This will result in

about factors of two change in collision frequency and factors of two or more changes

in electron density. From the graphs of attenuation constant vs (w W) 2 for various

ratios of v/w presented by Bachynski at al.,31 it may be inferred that these changes
will induce changes in absorption coefficient of factors of two or more for certain

ranges of the parameters (w p1w) and (vlw). These effects are certainly important

from a re-entry communications system point of view.

Unfortunately the order of magnitude changes which are expected to. result from

this type of nonlinear interaction are of the same order as the uncertainties in the

rate coefficients for electron-ion recombination. The present state of the art is
such that even for calculations of electron density profiles about blunt-nosed re-

entry vehicles under equilibrium flow regimes, only order of magnitude estimates
may be obtained. Thus, the effects of the nonlinear interaction of microwave radia-

tion with ionized flow fields, as presented in this report, will result in changes of

electron density which are of the same order of magnitude as the uncertainties in the

electron density. However, as more accurate information on the rate coefficients

for the many processes that occur in high-temperature air become available, the
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theory presented will enable accurate predictions to be made on changes in power

transmitted through ionized flow fields at relatively high power levels.

The present analysis has been based upon the assumption that the plasma medium

reaches a steady state under the influence of a plane monochromatic electromagnetic

wave. The boundaries are assumed to be so steep compared to a wavelength that

they may be represented as plane interfaces. Figures 10a, b, and c of Un and

Teare's4 report indicate that the eiectron density has essentially reached its maxi-

mum value one hundred upstream mean free paths behind a normal one-dimensional

shock front for Mach numbers between about 15 and 25. At an altitude of 200, 000

ft, one upstream mean free path is about 0. 05 cm so that within a distance of 5 cm
12 3the electron density builds up to about 5 X 10 particles/cm . If this region over

which steep electron dc.=sity gradients occur is less than about a quarter of a wave-

length, they may be represented as plane interfaces to a good approximation. Of

course, at altitudes below 200, 000 ft the gradients are even steeper; while at about

250, 000 ft the shock front becomes diffuse. At 100, 000 ft, one hundred upstream

mean free paths is about 0. 1 cm. The one hundred mean free paths criterion for

electron density buildup applies only to a normal one-dimensional shock. The model

considered in this report of a planar slab is more appropriate for regions that lie

at a distance of more than one nose radii behind the tip of a hemisphere-cylinder

body. Naturally the plasma sheath in this region is cylindrical in shape, but a planar

geometry will give an accurate description of the electromagnetic reflection and

transmission characteristics if the radius of the cylinder is large compared to a

wavelength.

Since the boundaries defining the plasma medium at altitudes less than 200,000

ft are very steep compared to wavelengths for X-band radiation (3 cm) and frequencies
lower than 10 kMcps, the boundaries will be represented as plane interfaces. For

an abrupt discontinuity in dielectric constant of the medium, there is no energy

deposition at the discontinuity, only reflection or transmission of electromagnetic

radiation. Hence the assumption will be made that the boundaries of the plasma

medium are not disturbed by electromagnetic radiation at X-band frequencies for

power levels up to 1000 watts/cm2 . This appears to contradict the result of the

investigations of King, 16 who found that the plasma-air boundary representing a shock

front will move toward a source of high-intensity microwave radiation. This study

is based upon the WKB solution of the wave equation for the field distribution in the

plasma medium, and is valid only when the electron density gradients are small com-

pared to a wavelength (when w > w and d In N e/dZ << 1/•). The application of the

WKB approximation to problems of propagation through the re-entry plasma sheath

appears to be restricted to altitudes above 200, 000 ft and to electromagnetic radia-

tion wavelengths of about I cm or less. The analysis as presented in this report

pertains to electromagnetic propagation from the vehicle out through the re-entry
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sheath, whereas King is concerned primarily with propagation in the opposite sense.
Thus, insofar as propagation out through the re-entry sheath is concerned, the inter-
face of the plasma medium defined by the boundary layer will not physically move
because of the proximity of the vehicle surface. Since the power level of the electro-
magnetic wave will be conwiderably reducedl by the time the wave has traversed the
plasma layer, one may assume that the boundary of the plasma medium at the shock
front will not move. One of the basic assumptions in this report is that the electron
density and temperature, profiles will redistribute themselves behind the shock front

under the influence of high-power electromagnetic radiation in such a fashion that
no mass motion of electrons will result, nor will the boundaries defining the plasma
medium be seriously perturbed.

King 16 has found that an ionization front will move toward the source of high-
power electromagnetic radiation. This result was obtained under the assumption

that the WKB approximation adequately represents the solution to the wave equation
in the plasma medium. Thus, King has obtained the result of a moving plasma
boundary precisely for the case where the electron density gradients at the boundary
vary slowly compared to a wavelength. The model King has chosen to represent the

interaction of high-power radio-frequency radiation with a plasma is somewhat
idealized, in that a full description of the many microscopic processes is not taken
into account. For instance only three parameters are used to characterize the
plasma medium: the ionization cross section (di), the total cross section (a), and
the ionization potential (WM). Not only is such a model restricted to plasmas con-
sisting of but a single neutral specie, but also King uses the same parameters
(a, Pi, and Wi) to represent the medium in front of and behind the ionization profile.
This is certainly not realistic with regard to air shocks, where the constituent NO
(which has a low ionization potential) exists behind the shock front but not in the un-
perturbed air ahead of the shock front. Then, too, the assumption that the quantity

NW• Nee2v E

m(w 2+v2)

represents the number of ion pairs created per unit time is founded on the supposition

that the collision frequency for momentum transfer Y, which appears in the formula
for the conductivity, is identical to the 'effective' collision frequency given by Eq.
(2). But this is approximately true only if the vlncity-dependent cross section for

momentum transfer a(v) is not too strongly dependent on velocity and if the isotropic
part of the electron distribution function fo is Maxwellian. King has avoided a dis-
cussion of the conditions under which the isotropic part of the electron distribution
function will remain Maxwellian and hence there is no direct employment of the
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electron temperature as a parameter. This was possible by coupling the solution

to the wave equation directly to the particle conservation (continuity) equation, by-

passing any consideration of an energy balance equation. However the conditions

under which the isotropic part of the electron distribution function will remain

Maxwellian under the influence of an electromagnetic field (v ee>>Gv) are precisely

the same conditions that lead to a large thermal conductivity coe'fficient of the electron

gas (K ee). Electron-electron collisions are effective in transporting heat from one

part of the electron gas to another, and a high interelectron collision frequency

implies a large thermal conductivity coefficient.

These preliminary facts lead to the important observation that the electromag-

netic energy deposition in a slowly varying electron density gradient is ntot always

as selective as Klein et al6 9 claim, because the pattern of electromagnetic energy

deposition in a plasma may be determined, in certain important instances, by the

thermal conductivity of the electron gas in addition to its dependence on the variation

of dielectric constant of the plasma (due to electron density gradients). Klein et a16 9

have found that, for a slowly varying electron density gradient, a maximum transfer

of electromagnetic energy to the plasma will occur just anterior to the resonant

plasma depth. The resonant plasma depth is the depth of the plasma for which the

electron density becomes critical, Nc = (W2 +V2)m /e 2 . A high interelectron col-

lision frequency (Yee >> Gt', a condition that is met for the stagnation region of the
re-entry plasma sheath and many radio-frequency plasma discharges in the labora-

tory) will produce an equilibration within the entire body of the electron gas of the

electromagnetic energy deposited at any point on the electron density profile. If

Ves >> Gv, the time for energy equilibration within the electron gas r ee = I/Pee

is much faster than the time for energy transfer between electron gas and neutral

gas. Electromagnetic energy which is most efficiently deposited at the critical

density on the electron density profile will very quickly be redistributed within the

entire electron gas behind the ionization front. The effect of the high thermal

conductivity of the electron gas, together with the rapid electron-electron thermali-

zation time, has not been included in King's model. It is expected that the electron

thermal conductivity effects will tend to reduce the local rate of electron growth

at the resonant plasma depth, so that the picture of an ionization front moving toward

the source of electromagnetic energy will be modified. It is suggested that the

whole phenomenon of moving ionization fronts, including the effects of electron

thermal conductivity, should be more intensively investigated both from the experi-

mental and theoretical point of view.

It should be stressed at this point that the important effects of electron gas

thermal conductivity may be incorporated into the scheme presented in this report.

In the first approximation the effects of the thermal conductivity of the electron gas

are neglected. This is Justified if the electron temperature gradients established
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by the presence of the electromagnetic field are not greater than one hundred times

the gradients that prevailed in the absence of the electromagnetic field. It may then

be easily shown that the terms in the energy balance which represent heat flow from

electron gas to neutral and ion gas are one or two orders of magnitude greater than

the terms which represent heat transport from one part of the electron gas to an-

other (when Yee >> Gv, the term I Kee VTe is dominant). Hence, in the first

approximation the plasma medium may be divided into a stack of homogeneous slabs

with no thermal coupling between them. Then, the steady-state electron density and

temperature distribution due to a high-power electromagnetic wave may be found by

using the energy balance equation, the equation for the effective dielectric constant

of the plasma medium, and Maxwell's equations written in the form of difference

equations. The energy balance equation is solved for the electron temperature at

each step in the numerical integration, where only terms that represent heat flow

from electron gas to neutral and ion gas are included. Once the new electron

density and temperature distribution have been found due to the perturbing electro-
magnetic field, a correction to the temperature distribution due to thermal conduc-

tivity may be taken into account by an iterative procedure. Consider a thin sheet

of plasma within the slab, located at the position Z and with thickness dZ. The
heat flowing into the face at Z is JZ K ee(dTe /dZ) dA, whereas the heat flowing

into the face at Z + dZ is JZ+dZ Kee (dTe/dZ) dA. By using the divergence theorem,

the net heat flowing into the thin sheet may be written:

dT dK _(T 2 d 2Td K e ee R.; + K"M eee Td- F dZ Kee dZ 2

Since only the heat flow produced by the perturbing electromagnetic field should be

considered in the energy balance equation, the quantity

-dKe dT N 2  d 2T dK (f\)2 L2

I e e +e ee d--- Ti+ K ee d&F dT )d K ee dZ2]L e dZ2d

represents the heat flow into a thin sheet of plasma due to electron thermal conduc-

tivity.

After finding the temperature distribution in the slab by neglecting the electron

thermal conductivity, a second step-by-step numerical integration of the field equa-

tions may be performed, where now the term

dKee dT 2 d 2 T d dT 2  d 2 T

F ( -' + K L

Le eT rdZ '. d Z7
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is added to the energy balance equation at each step in the numerical integration.

This procedure will give a new electron temperature distribution (and a new electro-

magnetic field distribution) that may now be used to perform a third step-by-step

numerical integration. The entire procedure may be repeated until a completely

self-consistent met of solutions to Maxwell's equations, the energy balance equation,

and the equation for the effective dielectric constant of the medium have been ob-

tained.

The assumption that the neutral and electron gas remain stationary during the

interval of high-power interaction is reasonable, so that there will be little conling

of the plasma as a result of convective flow. The characteristic time for energy

equilibration within the electron gas is T ee 2 1/vee m 10'9 sec and the character-

istic time for energy transfer between electron gas and neutral gas is 7"EN i 10 6sec

at Te = 50009K and 7EN 0 10-7 sec at Te n 20, 000 K for the stagnation region of an

air shock at 200, 000 feet. This relaxation time for energy transfer between electron

gas and neutral gas will become as fast as 10"7 sec at Te = 50000K and 10-8 sec at

Te = 20, 000*K for shocks at 100, 000 feet. Assuming a characteristic length of 10 cm

corresponding to the width of an electromagnetic beam, and a maximum flow velocity

of 106 cm/sec, the time for a portion of the plasma sheath to flow out of the influ-

ence of the perturbing beam is approximately 10-5 seconds. Thus the very important

conclusion has been reached that the plasma sheath may be considered as a stationary

gas when considering the perturbing influence of high-power electromagnetic radia-

tion on the ionized flow field, especially at altitudes below 200, 000 ft and at power

levels that may raise the electron temperature to 20, 000*K (corresponding to an

electron fractional energy loss G m 10 2).

The entire analysis has been carried as far as the present state of the art
2

permits. At power levels higher than about 1000 watts/cm , electron temperatures

will be brought into a range (above 30, 000*K) where the cross sections for elastic

and inelastic electron-neutral collisions and the rate coefficients for electron-ion

recombination are unknown.

A basic parameter in the analysis, the relative fractional energy loss of an

electron per collision (G) is known for most constituents only up to electron energies

of about 3 ev (30, 000K). Of course, it has been implicitly assumed during this

investigation that the values of the relative fractional energy loss of an electron per

collision with neutrals which have been experimentally determined for cold gases

(T w 3000K) will still have the same dependence on electron temperature for high

temperature air (T a 50000K). In other words it has been assumed that G is only

a function of Te and not T. This is similar to the implicit assumption of Shkarofsky

et al 3 2 that the collision cross sections for electron scattering of the neutral con-

stituents is a function only of Te and not T. The gas temperature is assumed to

have an effect only in that the degree of dissociation of air changes with gas
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temperature, so that the effective scattering cross section or effective G factor of

the gas mixture must be determined by weighting the cross sections or C factors

by the relative concentrations of the appropriate neutral constituents. However the

cross-section a. or the parameter G for the particular 3th neutral constituent is

assumed to vary only with Te and not T.

That this assumption may not be entirely correct can be seen from the following

considerations. A homonuclear diatomic molecule such as N2 or 02 has no perman-

ent dipole moment, so that the vibrational levels corresponding to each electronic

state of the molecule are metastable and may have a lifetime as long as 10"5 seconds.

The rotational states have a lifetime of about 10-9 seconds. When the translational

temperature behind an equilibrium shock in air is about T x 5000°K (0. 5 ev), most

of the 02 will be dissociated but there will be an appreciable amount of N . Molecule-

molecule and atom-molecule collisions will occur at the rate of about 10 sec

It requires only one or two molecule-molecule collisions to achieve translational-

rotational equipartition and about 100 molecule-molecule collisions to achieve trans -

lational-vibrational equipartition. For T"e - 5000*K, p/po = 10-3; and for T = 5000*K,

Gm 106 sec- 1. At about one hundred upstream mean free paths behind a normal

one-dimensional shock at 200, 000 ft. corresponding to a velocity of about 20, 000

ft/sec. an appreciable fraction of the molecules (mainly NO and N 2 ) will be in ex-

cited vibrational states. Harries28 found that the lowest vibrational state of N2 is

0. 29 ev. Since NO is a nonsymmetric diatomic molecule, it has a permanent dipole

moment: thus the lifetime of a vibrational level is expected to be about 10-8 sec.

The time between electron-neutral inelastic collisions is T"EN = I/Gy P 10-6 sec,

so that electron collisions with the molecule NO can result in collisions which ex-

cite at least the lowest vibrational level of NO. However the lifetimes of the vibra-

tional levels of the homoruclear molecules N2 and 02 are about 10 - sec and 10

sec respectively, which are longer than I/Gv m 10 seconds. Hence electron

energy loss under impact with the molecules N 2 and 02 can occur only by excitation

of the rotational levels of the associated metastable vibrational levels of these

molecules, and not by excitation of the vibrational levels themselves because the

second vibrational level would not be available for excitation.

For cold gases (T w 300*K) the electron energy loss per collision with a homo-

nuclear diatomic gas is independent of pressure and depends only on electron tempera-

ture. Since cross-modulation measurements of Gy are usually made in gases that

are less than 0. 1 per cent ionized, relatively few molecules are involved in inelastic

encounters and there is always a plentiful supply of molecules which will not be in

metastable levels. This implies that, in the case of cold (T w 3009K) homonuclear

diatomic gases, cross-modulation measurements of Gv for Te P 5000*K would not

depend upon whether rEN = l/Gv is less or greater than 7VIB"
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This analysis implies that whereas for a cold gas (T a 3004K, Te n 50000K) the

measurements of Gv are dependent only on Te, for a high temperature (T = 50000K,

Te - 50004K) homonuclear gas (N2 ) the fractional energy loss of an electron depends

both on electron temperature and whether rEN= I/Gp is much greater or much

less than 7VIB' For N 2 and 02 the following relations should apply:

When 'EN I/Gy << TVIB (High Pressure)

G(T - 5000-K, Te = 5000K) < G(T - 300-K, Te - 5000-K)

When 'EN 1/Gy >> r VIB (Low Pressure)

G(T - 5000(K, Te - 50000K) a G(T = 3006K, Te - 50006K)

For a diatomic molecule with a permanent dipole moment such as NO,

G(T = 5000-K, Te - 5000K) - G•' - 3004K, Te - 50000K)

regardless of the value of GY (7EN 1 lIGi is almost always longer than rVIB(NO) ,

10-8 sec except at very high pressures).

Massey and Burhop 7 contend that the G values of 02 are somewhat higher

than the G values of N2 for cold gases at Te N 0. 5 ev because of low-lying electronic

states of the oxygen molecule which may be excited under electron impact. The

low-lying electronic states of 02 (a&g at 0. 8 ev and b E at 1. 3 ev) are metastable

with enormous lifetimes of the order of 10 seconds. At T - 3000*K (02 is fairly

well dissociated at T - 40000K and p/po . 103 ), about 10 per cent of the 02 molecules

will be in the excited metastable low-lying electronic states. Only the rotational

levels associated with the lowest vibrational state of the metastable electronic state

of 02 will be available for excitation under electron impact. Hence it is expected

that at high gas temperatures (T - 3000*K), high pressures rEN lIGv Y<< VIB

and for 1e ft 0. 5 ev, the G values for 02 will decrease from the cold gas G values

corresponding to the same electron temperature. The interesting point is that the

G values for 02 should exhibit a more pronounced decrease than the G values for N2

as the gas temperature is raised. The G values for NO should not show much of a
change as the gas temperature is raised. A final point should be added about the

effects of electron attachment on the measured G values of electronegative gases

(NO and 02). Although electron attachment to neutrals constitutes a loss of energy

so far as the electron gas is concerned, the rates of electron attachment (three body)

and detachment are so slow compared with the electron energy loss due to rotational,

Svibrational, and electronic excitation that electron attachment does not contribute
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to the relaxation time TEN l1/GY as measured in a cross-modulation experiment.

These interesting ouggestions*lead to the possibility of a whole new host of experi-

mental investigations of the G values of diatomic gases at high gas temperatures

(T ; 3000K).

It is hoped that the type of approach presented in this report will bring about a
better understanding of the difficult problem of breakdown of missile antennas at

high-power levels. The model of a plane-wave incident at arbitrary angle upon a

nonlinear one-dimensional inhomogeneous multicomponent plasma slab may also be
applicable to the interpretation of ionospheric radio-scattering data performed at

high-power levels. Molmud68 has already suggested using high-powered ground-

based radio transmitters, such as the Puerto Rican Arecibo facility, to perturb

the D region of the ionosphere. Induced changes in electron density and collision
frequency may be observed by the changes in reflection coefficient they produce on

the high-power transmitting wave or on a second wanted wave. From an examina-

tion of the shape of pulse returns, it may be possible to gain information on the
dominant rate processes for electron attachment and recombination.

The author is indebted to Mr. Michael Mentzoni for several stimulating discussions.
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